| 研究生: |
方家為 Fang, Jia-Wei |
|---|---|
| 論文名稱: |
銀奈米線表面遷移形成銀奈米網之研究 A study of fabricating silver nano-net via surface migration |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 銀奈米線 、銀奈米網 、透明導電膜 |
| 外文關鍵詞: | Ag nanowire, Ag nano-net, transparent conductive film |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究加熱銀奈米線所產生的變化,並應用加熱後銀奈米線表面會產生遷移導致形變的結果,使相互交疊的銀奈米線形成銀奈米網,再將銀奈米網應用在製備透明導電膜上。本實驗主要可分為兩大部份,第一大部份又可細分為兩小部份,分別是使用兩種不同的加熱方式,使均勻分布在基板上的銀奈米線能夠產生連結形成銀奈米網,以及探討加熱銀奈米線後銀奈米線產生的變化。第二大部份則是將銀奈米網應用在透明導電膜上。
由第一大部份的實驗結果可知銀奈米線在加熱(給予能量)後,銀奈米線的表面會產生遷移,並朝向低能量的晶面(111)排列,以及銀奈米線和基板之間的附著力(adhesion)會極大的影響銀奈米線表面產生遷移的情況。在表面遷移的過程中銀奈米線會產生形變,使得互相交疊的銀奈米線聯結成銀奈米網,並整理出在不同銀奈米線分布的密度時適合何種加熱方式和加熱溫度及持溫時間形成銀奈米網。
第二大部份的實驗則是把不同密度分布的銀奈米線/網由AZO所夾住形成類似三明治結構,並量測其電阻率和穿透率,得到在同密度的銀奈米線分布下,不管夾層是銀奈米線或是銀奈米網皆不會影響其穿透率,然而銀奈米網的電阻率會在更低,以及製備出穿透率為80%時電阻率為9.513×10-3Ω-cm的透明導電膜。
In this thesis, the surface migration of silver nanowires (NWs) was observed and the annealing temperature and dwell time required for NW fusion are investigated. Rapid thermal annealing (RTA) system and high-temperature quartz tube furnace were used this study. When the Ag NWs are treated at elevated temperatures, the Ag atoms at the NWs will migrate and leads to deformation, the overlapped NWs could fused together and forms Ag nano–net. Resistivity and transparency of the Ag nano-net embedded transparent conductive films are studied.
This experiment can be divided into two parts. In the first part, two different annealing systems were used to anneal uniformly distributed Ag NWs to form Ag nano-net by linking or fusing the NWs together. Surface migration of Ag NWs after the annealing is also explored. In the second part, I sputtered transparent conductive films with or without Ag nano-net embedded to study thier resistivity and transparency.
The results show that Ag atoms will migrate toward low energy surface (111) during the annealing. The adhesion between Ag NWs and the substrate can greatly affect Ag’s surface migration. The surface migration of Ag NWs will distort the shape of the NWs, the overlapped area of the NWs fused together and forms Ag nano-net. This study investigates heating system, temperature and dwell time that suitable to from Ag nano-net as a function of NW density.(RTA,500℃,3min for rarefaction and high-temperature quartz tube furnace,250℃,10min for dense)
The resistivity and transmittance results of Ag nano-net embedded AZO films show that NWs fuse together or not does not affects their transmittance, however, the resistivity of the AZO film with fused Ag nano-net embedded has much lower resistivity than those without. Finally, transmittance of 80% with resistance of 9.513 × 10-3Ω-cm AZO film has been fabricated in our lab.
[1] S. Lijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 364, 737 (1993).
[2] W. De Bosscher, H. Delrue, J. VanHolsbeke, S. Matthews, and A. Blondeel, “Rotating Cylindrical ITO Targets for Large Area Coating”, Society of Vacuum Coaters ,48th Annual Technical Conference Proceedings, 111-115 (2005).
[3] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk “ Dependence of oxygen flow on optical and electrical properties of DC-magnetron”, Thin solid Films 326, 72-77 (1998).
[4] C. Choi., W.J. Lee, J.K., S.O. Jung, W.J. Lee, W.S. Kim, S.J. Kim, C. Yoon“ Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by dc. magnetron sputtering”, Thin solid Films 258, 274-278 (1995).
[5] S. K. Choi and J. I. Lee “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A 19, 2043-2047 (2001).
[6] M. Bender, J. Trube, J. Stollenwerk “Deposition of transparent and conducting indium tin oxide films by the r.f.-superimposed DC sputtering technology”, Thin solid films 354, 100-105 (1999).
[7] W.M. Gnehr, U. Hartung, T. Kopte “Pulsed Plasmas for Reactive Deposition of ITO Layers”, 2005 Society of Vacuum Coaters, 48th Annual Technical Conference Proceedings, 312-316 (2005).
[8] D.R. Gibson, I.T. Brinkley, G.H. Hall, E.M. Waddell and J.M. Walls “Properties of indium tin oxide deposited using reactive closed field magnetron sputtering”, 2006 Society of Vacuum Coaters, 49th Annual Technical Conference Proceedings, 260-264 (2006).
[9] D. W. Lane, J. A. Coath, K. D. Rogers, B. J. Hunnikin, and H. S. Beldon, “Optical properties and structure of thermally evaporated tin oxide films”, Thin Solid Films 221, 262-266 (1992).
[10] R. D. Tarey, and T. A. Raju, “A method for the deposition of transparent conducting thin films of tin oxide”, Thin Solid Films 128, 181-189 (1985).
[11] 蔡裕榮,周禮君,以溶膠凝膠法製備透明導電氧化物薄膜的探討,Chemistry (the Chinese Chem. SOC., Taipei) 60, 307-318 (2002).
[12] R.K. Shukla, Anchal Srivastava, Atul Srivastava, K.C. Dubey, “Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition”, Journal of Crystal Growth 294, 427–431 (2006).
[13] J.Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes”, Nano Lett. 8, 689–692 (2008).
[14] V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, J. N. Coleman, “Spray Deposition of Highly Transparent, Low-Resistance Networks of Silver Nanowires over Large Area”, Small 7, 2621–2628 (2011).
[15] D.S. Leem, et al., “Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes” Adv. Mater. 23, 4371–4375 (2011).
[16] L. Hu, H. S. Kim, J.Y. Lee, P. Peumans, Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes” ACS Nano. 4, 2955-2963 (2010).
[17] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai D. L. Peng, “Copper Nanowires as Fully Transparent Conductive Electrodes” scientific reports 3, (2013)
[18] U. J. Kim, et al., “Graphene/Carbon Nanotube Hybrid-Based Transparent 2D Optical Array” Adv. Mater. 23, 3809–3814 (2011).
[19] S. Liu, J. Yue, A. Gedanken, “Synthesis of Long Silver Nanowires from AgBr Nanocrystals”, AdV. Mater. 13, 656 (2001).
[20] Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, Z. Y. Chen, Chem. Mater. 11, 545(1999).
[21] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, Z. Y. Chen, “A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites”, AdV. Mater. 11, 850-852 (1999).
[22] J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, U. Gosele, “Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio”, Chem. Mater. 15, 776 (2003).
[23] M. P. Zach, K. H. Ng, R. M. Penner, “Molybdenum nanowires by electrodeposition”,
Science 290, 2120-2123 (2000).
[24] T. M. Day, P. R. Unwin, N. R. Wilson, J. V. Macpherson, “Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks”, J. Am. Chem. Soc. 127, 10639-10647 (2005).
[25] Y. J. Han, J. M. Kim, G. D. Stucky, “Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15”, Chem. Mater. 12, 2068-2069 (2000).
[26] D. Zhang, L. Qi, J. Ma, H. Cheng, “Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer”, Chem. Mater. 13, 2753-2755 (2001).
[27] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire”, Nature 391, 775-778 (1998).
[28] N. R. Jana, L. Gearheart, C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowiresof controllable aspect ratio”, Chem. Commun., 617-618 (2001).
[29] Y. L. Chiang, Y. M. Yeh, “High Aspect Ratio Metal Nanowire Arrays Fabricated by Electrochemical Deposition”, Journal of Technology 24, 251-255 (2009).
[30] E. Braun, Y. Eichen, U. Sivan, B. Y. Gdalyahu, “DNA-Templated Assembly and Electrode Attachment of A Conducting Silver Wire”, nature 391, 775-778 (1998).
[31] C. J. Murphy, N.R. Jana, Adv. Mater. 14, 80 (2002).
[32] 鄭子厚 國立交通大學應用化學所碩士論文 2003。
[33] Z. Wang, J. Liu, X. Chen, J. Wan, Y. Qian, Chem. Eur. J. 11, 160 (2005).
[34] Y. Sun and Y. Xia, “Large-scale Synthesis of Uniform Silver Nanowire through a Soft, Self-Seeding, Polyol Process”, Advanced Materials 14, 833-837(2002).
[35] Y. Sun, B. Gate, B. Mayers, and Y. Xia, “Crystalline Silver Nanowires by Soft Solution Processing”, Nano Letters 2, 165-168 (2002).
[36] Y. Sun, B. Mayers, T. Herricks, and Y. Xia, “Polyol Synthesis of Uniform Silver Nanowire: A Plausible Growth Mechanism and The Supporting Evidence”, Nano. Letters 3, 955-960(2003).
[37] B. Wiley, Y. Sun, B. Mayers and Y. Xia “Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver”, Chemistry-A European Journal 11, 437-441 (2008).
[38] K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid Synthesis of Silver Nanowire through a CuCl- or CuCl2- Mediated Polyol Process”, J. Mater. Chem. 18, 437-441 (2008).
[39] W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, and K. Fan, “Synergy between Crystal Strain and Surface Energy in Morphological Evolution of Five-Fold-Twinned Silver Crystals”, J. AM. CHEM. SOC 130, 15581-15588 (2008).
[40] E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions” Nature materials 11, 241-249 (2012)
[41] 蕭宏,半導體製程技術導論,台灣培生教育出版公司,台灣,461-462 (2007)。
[42] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版。
[43] 許樹恩 and 吳泰伯, X 光繞射原理與材料結構分析 : 民全書局, 169 (1996)。
[44] L. B. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes”, ACS nano. 4, 5, 2955-2963 (2010).