簡易檢索 / 詳目顯示

研究生: 黃章奇
Huang, Chang-Chu
論文名稱: 水平軸式風力機突節葉片之最佳化設計
Optimal Design of the Protuberant Blades of a Horizontal Axis Wind Turbine
指導教授: 夏育群
Shiah, Yui-Chuin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 90
中文關鍵詞: 水平軸風力發電機田口方法數值模擬翼前緣突節風洞實驗
外文關鍵詞: horizontal-axis wind turbine, Taguchi method, numerical simulation, leading edge protuberances, wind tunnel experimental
相關次數: 點閱:154下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用數值模擬與風洞實驗探討翼前緣突節對變速型水平軸式風力機葉片性能之失速特性並以田口方法設計實驗參數組合,以較精簡的次數找尋適合於變速型水平軸式風力機翼前緣突節葉片最佳幾何參數設計。從數值模擬及風洞實驗結果發現,其最佳化突節參數可用於葉片元素動量理論之葉片,改善葉片低轉數高攻角失速之特性並對於葉片扭矩值及效率有所提升。
    利用數值模擬觀察葉片表面之流場現象,可發現具有翼前緣突節之葉片會在葉片低轉數失速時在波谷區有渦流匯聚效應,此一效應也為其葉片在失速時扭矩值的來源。這現象可證明翼前緣突節葉片可利用於流場控制特性來提升水平軸式風力機葉片性能之失速特性。

    In this study, the research is focused on the numerical simulation and wind tunnel experiment of leading edge protuberances on blades performance at the stall region of small-scale horizontal axis wind turbine with variable rotational speed. Taguchi Method has been used to set up the numerical experiments in search of a set of geometric parameters of leading edge protuberances on blades.From numerical simulation and wind tunnel experimental results showed that the optimal parameters of the leading edge protuberances on blades has higher C_p and torque than other without the leading edge protuberances rotor models at the lower tip speed ratio.
    From observing the flow fields on the blades, it can be seen that the sinusoidal leading edge begin the vortex convergence phenomenon. The vortex convergence phenomenon can improve the performance during the stall region for HAWT, and this result show out the flow control in the blade is possible.

    ABSTRACT IN CHINESE i ABSTRACT ii ACKNOWLEDGEMENT iv CONTENTS v LIST OF TABLES vii LIST OF FIGURES ix NOMENCLATURE xiii CHAPTER Ⅰ INTRODUCTION 1 1.1 Historical Description 1 1.1.1 The modern wind turbine 2 1.2 Literature Review 10 1.3 Motivation and Objectives 21 1.4 Contents of Research 22 CHAPTER Ⅱ RESEARCH METHODS AND EXPERIMENTAL APPARATUS 23 2.1 Airfoil Characteristics 23 2.2 Performance Parameters of HAWT 24 2.3 Taguchi Method 26 2.4 Experiment Arrangement 31 2.4.1 Experimental Test Model 33 2.4.2 Experimental Test Equipment 34 CHAPTER Ⅲ NUMERICAL SIMULATION 38 3.1 Governing Equations 39 3.2 Turbulence Model 40 3.2.1 Shear-Stress transport k-ω turbulence model 40 3.3 Numerical Method 42 3.3.1 SIMPLE Algorithm 43 3.3.2 Upwind Differencing 45 3.4 Grid Generation and Validation of Simulation 46 3.4.1 2D airfoil Simulation 46 3.4.2 3D blade Simulation 51 CHAPTER IV SIMULATION RESULTS AND EXPERIMENTAL DATA 56 4.1 Simulation results of Taguchi method 56 4.1.1 S/N ratios response tale and Response Graph 59 4.1.2 Dimensionless simulation results of Taguchi method 61 4.1.3 Analysis of variance 64 4.1.4 Confirmation run 66 4.2 One factor at a time analysis 75 4.3 Wind tunnel experiment results 78 CHAPTER V CONCLUDING REMARKS 85 REFERENCES 88

    [1] Manwell, J. F., McGowan, J. G., and Rogers, A. L., "Wind Energy Explained—Theory, Design and Application", John Wiley & Sons Ltd, United Kingdom W. S., pp.83-138., (2009).
    [2] D.S. Tony Burton, Nick Jenkins, Ervin Bossanyi, ”Wind Energy Hand book”, Wind Energy Consultant, Carno, UK, (2001).
    [3] F.E .B. Fish, J. M., "Hydrodynamic design of the humpback whale flipper", Journal of Morphology Vol.225, P.51–60, (1995).
    [4] F.E.B. Fish and J. M. Battle, "Hydrodynamic design of the humpback whale flipper", Journal of Morphology, Vol.225, P.51–60, (1995)
    [5] D.S. Miklosovic, M.M. Murray, L.E. Howle, F.E. Fish, "Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers", Physics of Fluids, Vol.16 (5) P.39, (2004)
    [6] D.S. Miklosovic, M.M. Murray, L.E. Howle, "Experimental Evaluation of Sinusoidal Leading Edges", Journal of Aircraft, Vol.44 (4), P.1404-1408, (2007).
    [7] H. Johari, C.W. Henoch, D. Custodio, A. Levshin, "Effects of Leading-Edge Protuberances on Airfoil Performance", AIAA Journal Vol.45.11,P.2634-2642 (2007)
    [8] E. van Nierop, S. Alben, M. Brenner, "How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model", Physical Review Letters Vol.100 (5), (2008).
    [9] J. L. E. Guerreiro, J. M. M. Sousa, "Low-Reynolds-Number Effects in Passive Stall Control Using Sinusoidal Leading Edges", AIAA Journal ,Vol.2 ,P.461-469, (2012)
    [10] R.-K. Zhang, V.D.J.-Z. Wu, "Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge", Wind Energy Vol.15 (3), P.407-424, (2012)
    [11] N. Rostamzadeh, R. M. Kelso, B. B. Dally and K. L. Hansen, "The effect of undulating leading-edge modifications on NACA 0021 airfoil characteristics', Physics of Fluids Vol.25, 117101(2013)
    [12] N. Rostamzadeh, K. L. Hansen, R. M. Kelso and B. B. Dally, "The formation mechanism and impact of streamwise vortics on NACA 0021 airfoil's performance with undulating leading edge modification',Physics of Fluids Vol.26, 107101(2014)
    [13] Guo-Yuan Huang, “The Study of Leading Edge Protuberances on Blade Performance of Horizontal Axis Wind Turbine”, Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
    [14] J.J.G. MichaelS. Selig, Andy P. Broeren “Low-Speed-Airfoil-Data-V1”, Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign, USA, P.286. (1995)
    [15] Patankar, S. V. and Spalding, D. B., "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows." International Journal of Heat and Mass Transfer 15(10): 1787-1806., 1972.
    [16] 李輝煌,“田口方法:品質設計的原理與實務”,高麗圖書有限公司出版,2008年。
    [17] Meng-Hsien Lee, “Numerical Simulation of The Aerodynamic Performance of Horizontal-Axis Wind Turbine Blades”, Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
    [18] FLUENT 6.3, User Guide, FLUENT Incorporated, 2006.
    [19] ANSYS FLUENT, “ANSYS FLUENT 14.0 Theory Guide,”ANSYS Inc, 2011.
    [20] Baliga, B. R. and Patankar, S. V., “A Control Volume Finite-element Method for Two-dimensional Fluid Flow and Heat Transfer”, Numerical Heat Transfer, Vol.6, 1983, PP. 245-261.
    [21] Wilcox, D. C., "Multiscale Model for Turbulent Flows." AIAA Journal 26(11): 1311-1320., (1988).
    [22] Menter, F. R., "Two-equation Eddy-viscosity Turbulence Models for Engineering Applications." AIAA Journal 32(8): 1598-1605., (1994).
    [23] Drela, M., "XFOIL: An Analysis and Design System for Low Reynolds Number Airfoil," Dept. of Aeronautics and Astronautics. MIT, (1989).
    [24] Schreck, S. J. Sorensen, N. N., and Robinson, M. C., “Aerodynamic structures and processes in rotationally augmented flow fields,” Wind Energy, 10, pp. 159-178. (2007)

    下載圖示 校內:2017-07-20公開
    校外:2017-07-20公開
    QR CODE