簡易檢索 / 詳目顯示

研究生: 李宬諺
Li, Chen-Yan
論文名稱: 磺酸化聚二苯胺之合成及其應用於有機光電元件
Synthesis of sulfonated poly(diphenylamine) and its application to organic electro-optical device
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 135
中文關鍵詞: 有機光電元件
外文關鍵詞: organic electro-optical device
相關次數: 點閱:38下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文利用導電性高分子磺酸化聚二苯胺當作為電洞傳輸的材料,應用在相關的高分子發光二極體與高分子太陽能電池中,其中研究的主題包含了三個部分。
    第一部分包含了高分子的合成與物性的分析,並進一步的應用在高分子發光二極體中,關於高分子的物性分析包含了氫與碳的核磁共振光譜圖、傅立葉轉換紅外線光譜圖、元素分析、可見光-紫外光吸收光譜圖、拉曼光譜圖、紫外光光電子光譜圖與熱重分析儀等,由紫外光光電子光譜圖證實了磺酸根的加入讓磺酸化聚二苯胺的功函數提升至5.2 eV,另外其在可見光區域擁有非常高的穿透度並且也有適中的導電度符合了當作電洞注入層材料的潛力,進一步的組裝成高分子發光二極體元件,在MEH-PPV當作發光層的系統中其發光效率可以達2.0 cd/A,可以媲美商業化電洞注入層材料PEDOT:PSS。
    第二部分的研究,將磺酸化聚二苯胺利用在高分子太陽能電池中當作電洞收集層,於磺酸化聚二苯胺的系統中其光轉換效率可達4.2 %而填充因子可達0.68,這些效能的表現都超過了商業化電洞收集層材料PEDOT:PSS(光轉換效率達3.6 %、填充因子達0.65),因為主動層中的型態與結構在兩不同的電洞收集層中是不一樣的,可以利用原子力顯微鏡與低掠角繞射X射線衍射法得到證實。
    第三個部分利用磺酸化聚二苯胺當作上修飾的電洞收集層在反置型的高分子太陽能電池,因為其溶解與成膜性好克服界面相容性的問題(主動層為疏水性),此反置型高分子太陽能電池即利用二氧化鈦當作電子收集層而磺酸化聚二苯胺當作電洞收集層,此二氧化鈦薄膜具有良好的平整性修飾了ITO玻璃的表面並且有不錯的電子收集能力,反置型的元件其光轉換效率可達3.91 % 媲美了傳統型的元件,並且大幅改善了元件壽命的問題,另外在此元件中此兩收集層具有好的界面修飾性,與主動層之間產生了歐姆接觸此可以利用元件的開路電壓得到證據,而磺酸化聚二苯胺也可以改善主動層與金屬之間界面偶極的問題。

    In this dissertation, sulfonated poly(diphenylamine) (SPDPA) was used as hole transporting material in the polymer light-emitting device (PLED) and polymer photovoltaic (PV) cell. The investigations included three sections as follows.
    The first section reported the synthesis and characteristics of SPDPA as hole-injection layer (HIL) in PLED. SPDPA was characterized in terms of 1H NMR, 13C NMR, FT-IR, Elemental analysis (EA), UV-vis, Raman, ultraviolet photoelectron spectroscopy (UPS) and TGA thermal stability measurement. The UPS spectra showed that SPDPA possessed 5.2 eV work function after inserting –SO3H groups. Besides, the high transparence in visible region and acceptable conductivity were beneficial as HIL material. The electroluminescence efficiency of polymer light emitting diode using poly(2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene) (MEH- PPV) as an active layer and SPDPA as HIL can be reached 2.0 cd/A, showing the slightly better performance than that using PEDOT:PSS as HIL.
    The secondary section reported that SPDPA used as an effective hole-collecting layer (HCL) in polymer PV cell. PV cells of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester used as the active layer with SPDPA as HCL showed the better power conversion efficiency (4.2%) and fill factor (0.68) than those with commercial poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (Baytron AI 4083) (3.6% and 0.65). The morphology change of the active layer was observed using atomic force microscopy and grazing-incidence X-ray diffraction. The enhanced device performance is attributed to the improved hole mobility and the increased crystallinity of P3HT due to the properties of SPDPA.
    The third section reported that SPDPA used as a top-contact HCL in the inverted polymer PV cell. An inverted device was fabricated using titania (TiO2) as the electron collecting layer (ECL) and SPDPA as HCL. Smooth TiO2 film with good electron collecting ability was easily formed using the spin-coating process. The PCE was 3.91 %, the same as that of a conventional device. This inverted device is ascertained to maintain 2.82% PCE after 400 hours of air-storage. Because of the appropriate work functions of ECL and HCL, the interfaces at the active layer have the ohmic contacts those approach the ideal value of open circuit voltage. SPDPA helps improve the interfacial dipole effect between the active layer and the metal, as verified by in-situ ultraviolet photoelectron spectroscopic data.

    中文摘要 ...i 英文摘要 .iii 誌謝 ...v 目錄 ....vi 圖目錄………………………………………………………………………………xi 表目錄…………………………………………………………………………..…xv 符號……………………………………………………………..………………….. xvi 第一章、 緒論………………………………………………..1 1-1 共軛高分子之光電特性……………………………………….1 1-1-1 前言………………………………………………………..1 1-1-2 導傳機制…………………………………………………..1 1-1-2-1 共軛高分子之能階圖…………………………………….2 1-1-2-2 載子傳遞的機制………………………………………….4 1-1-2-3 載子的產生與再結合的機制…………………………….6 1-2 有機發光二極體……………………………………………….7 1-2-1 有機發光二極體的起源與至今發展……………………..7 1-2-2 高分子發光二極體之電致發光原理……………………..9 1-2-2-1 電致發光原理…………………………………………….9 1-2-2-2 共軛高分子官能基導入之影響………………………...10 1-2-3 陽極與電洞修飾層材料………………………………….11 1-2-3-1 陽極材料………………………………………………....11 1-2-3-2電洞修飾層……………………………………………….11 1-2-4 元件電流的限制………………………………………….13 1-3 高分子太陽能電池……………………………………………15 1-3-1 有機太陽能電池之簡介………………………………….15 1-3-2 高分子太陽能電池之工作原理與特性分析…………….19 1-3-2-1 工作原理…………………………………………………19 1-3-2-2 電池特性分析……………………………………………21 1-3-3 提升高分子太陽能電池效能的各項方針……………….24 1-3-3-1 主動層退火處理…………………………………………24 1-3-3-2 改變Donor與Acceptor的材料………………………...25 1-3-3-3電極收集層的修飾……………………………………….27 1-3-3-4 元件結構的改善………………………………………....29 1-3-3-5 有效增加入射光源的使用率……………………………30 1-4 研究動機………………………………………………………31 第二章、磺酸化聚二苯胺之合成與分析應用於高分子發光二極體…………………………………………………………...59 2-1 前言……………………………………………………………59 2-2 實驗部分………………………………………………………60 2-2-1 磺酸化聚二苯胺之合成………………………………….60 2-2-1-1 藥品部分…………………………………………………60 2-2-1-2 聚二苯胺之合成…………………………………………60 2-2-1-3 磺酸化步驟………………………………………………61 2-2-2 PDPA與SPDPA之化學結構與物性之分析……………62 2-2-3 PLED元件組裝與測試…………………………………..63 2-3 結果與討論………………………………………...….………64 2-3-1 PDPA與SPDPA高分子物性分析……………………....64 2-3-2 PDPA與SPDPA光電特性之比較………………….…...67 2-3-3 元件分析…………………………………………….……69 2-4 結論…………………………………………………………....70 第三章、新穎電洞收集層磺酸化聚二苯胺應用於高分子太陽能電池............................................................................85 3-1 前言……………………………………………………………85 3-2 實驗部分………………………………………………………86 3-2-1 電洞收集層之使用………………………………….……86 3-2-2 太陽能電池之組裝……………………………………….86 3-2-3 太陽能電池之量測……………………………………….87 3-2-4 主動層P3HT:PCBM薄膜表面粗糙度觀察與結晶度之分 析………………………………………………………………………..88 3-2-5 電洞收集層的特性分析………………………………….88 3-3 結果與討論…………………………………………………….89 3-3-1 電洞收集層物性比較分析…..…………………………...89 3-3-2 太陽能電池元件分析…………………………………….90 3-3-3 主動層表面結構與結晶度分析…………………………91 3-3-4 單一電洞注入元件的特性分析........................................92 3-4 結論…………………………………………………...………..93 第四章、磺酸化聚二苯胺修飾當作上層電洞收集層應用於反置型太陽能電池……………………………………………102 4-1 前言…………………………………….……………………..102 4-2 實驗部分……………………………………………………...103 4-2-1 電洞收集層之使用……………………………………...103 4-2-2 TiO2薄膜之製作…………………………………………103 4-2-3 太陽能電池之製備……………………………………...104 4-2-3-1 傳統型元件之製備……………………………………..104 4-2-3-2 反置形元件之製備……………………………………..104 4-2-4 太陽能電池之量測……………………………………...105 4-2-5 TiO2薄膜表面粗糙度的觀察與特性分析………………105 4-2-6 紫外光光電子光譜圖之觀察…………………………...106 4-3 結果與討論…………………………………………………...106 4-3-1 TiO2薄膜光電特性分析…………………………………106 4-3-2 傳統型與反置型元件之比較…………………………...107 4-3-3 有機半導體材料與金屬界面的能障探討……………...108 4-3-4 空氣儲放測試…………………………………….……...110 4-4 結論…………………………………………………………...111 第五章、總結與展望……………………………………….121 參考文獻………………………………………………………………125 著作……………………………………………………………………134 期刊論文…………………………………………………………134 研討會論文………………………………………………………134 自述……………………………………………………………………135 圖目錄 圖1-1. 常見共軛高分子衍生物………………………...…..………………....33 圖1-2. 共軛高分子的導電範圍……………………………………………….....34 圖1-3. 共軛高分子之能帶圖…………………….………………………………….35 圖1-4. (a)順式與反式聚乙炔異構物;(b) 聚乙炔中soliton型態的缺陷;(c)聚對位苯中離子化quinoid型態的缺陷.…………………………………………….……….36 圖1-5. 共軛高分子摻雜時費米能階於能帶圖中變化的情形: P型摻雜(上方)與N型摻雜(下方)..………………………………………………………………….…………...37 圖1-6. 激發子的遷移、擴散與降落:(a) H型聚集 (b) J型聚集…………………...38 圖1-7. 有機材料電激發光原理的流程圖…………………………………………..39 圖1-8. 學術界第一次宣稱的元件結構圖(a) OLED (b) PLED..……………..…….40 圖1–9. (a).Ink-jet printing技術示意圖;(b)墨滴錯位;(c)膜厚不均………………41 圖1-10. OLED顯示器的進展……………………………………………………….42 圖1-11. 電洞注入層材料 (a) PANI與不同摻雜物;(b) PEDOT:PSS 與聚離子型高分子PFI摻混導致功函數改變;(c) 電洞注入層與電極間的能階示意圖…….43 圖1-12. 電洞傳輸層材料(a) fluorine與triarlyamine的共聚物與離子化游離能; (b) poly(BTPD-Si-PFCB)與應用元件的能階圖;(c) PTPBOS, PTFTS的結構…………44 圖1-13. (a)自組裝層修飾電極表面導致功函數改變之示意圖;(b) ITO 玻璃與自組裝層鍵結圖形、自組裝層類型與改變ITO功函數的圖形………………….……45 圖1-14. 層疊式太陽能電池的結構圖…………………………………………...46 圖1-15 (a). 目前宣稱光轉換效率最高的異質界面層疊式元件結構圖;(b) 利用模擬計算單層異質界面塑膠太陽能電池的理想光轉換效率值……………...………47 圖1-16. SIMENS利用inject-printed技術所製作的塑膠太陽能電池其PCE~ 5%.48 圖1-17. 異質界面太陽能電池之工作原理.……………………………………………49 圖1-18. (a) 有機太陽能電池的電路圖形;(b)照光時電池的I-V圖形…….……..50 圖1-19. (a)太陽光譜圖並考慮大氣中物質的吸收;(b) 慢揮發情形下P3HT:PCBM摻混物IPCE的轉換效率…………………………………………………………...……..51 圖1-20. 新穎電子受體與其吸光範圍:(a) MDMO-PPV;(b) P3HSe;(c) pBBTDPP2 ;(d) PCPDTBT…….……………….…………………………………..52 圖1-21. (a) 異質接面中電子施體與受體的相對分子能階;新穎的電子受體材料fullerne衍生物 (b)PCBM-C60; (c)PCBM-C70; (d) bisPCBM-C60………………..53 圖1-22. 金屬氧化物做新穎電子收集層(a) TiOx;(b) ZnO with SAMs……….….54 圖1-23.反置型光電元件結構利:(a) TiOx;(b) ZnO;(c) PFNBr-BTDZ05;(d)TiO2……………………………………………………………………………………….55 圖1-24. 層疊式太陽能電池: (a) 元件結構;(b) 吸光範圍;(c)效能.…………....56 圖1-25. 其他類型元件結構:(a)層壓式元件;(b)並聯式元件……………………...57 圖1-26. 利用光學間距物改變光場的材料如:(a)TiOx;(b)ZnO………………...…..58 圖2-1. 元件製作與結構圖.........................................................................................72 圖2-2. 核磁共振氫光譜圖:(a)中性態PDPA;(b)寡聚物型態的PDPA;(c)純化過後的PDPA;(d)SPDPA……………………………………………………………..……73 圖2-3. 核磁共振碳光譜圖:(a)純化過後的PDPA;(b) SPDPA……………...……74 圖2-4. FTIR光譜圖:(a)中性態PDPA;(b) SPDPA....................................................…75 圖2-5. AFM高低圖:(a) ITO基板;(b) SPDPA塗佈在ITO基板.............….76 圖2-6.熱重分析儀:(a)中性態PDPA;(b) SPDPA……………………….………….77 圖2-7. (a)可見光穿透度圖譜於ITO玻璃(----);SPDPA塗佈於ITO 玻璃(―);(b)中性態PDPA高分子溶於DMF (----),PDPA 摻雜硫酸溶於DMF (– ―);SPDPA溶於去離子水(―). ……………………………………………………………...…………78 圖2-8. 拉曼光譜圖利用633 nm當作激發光源:(a)中性態PDPA;(b) SPDPA..79 圖2-9. 紫外光光電子光譜圖:中性態PDPA (---)、SPDPA (—),其中(a) 圖為價帶與HOMO範圍,(b)圖為二次電子截止區..………………………………..…...…80 圖2-10. (a)單一電洞注入元件的J-V圖形(○) ITO/SPDPA、(▲) bare ITO、(◆) ITO/H2SO4-PDPA當作陽極;(b)利用Fowler Nordheim公式進行作圖.................81 圖2-11. 元件J-V-L圖形:(○) ITO/SPDPA、(●) ITO/PEDOT:PSS、(▲) UV-ozone-treated ITO、(◆) ITO/neutralized PDPA當作陽極………………………..82 圖2-12. 電流密度與發光效率作圖其中:(○) ITO/SPDPA, (●) ITO/PEDOT:PSS (▲) UV-ozone-treated ITO, and (◆) ITO/neutralized PDPA 當作陽極……………83 圖3-1. SPDPA與PEDOT:PSS的化學結構…………………………………………96 圖3-2. 太陽能電池其元件J-V 於(□) 30 nm PEDOT:PSS、(▽) 10 nm PEDOT:PSS、(◆) 26 nm SPDPA、(▲) 14 nm SPDPA、(●) 10 nm SPDPA (a)在模擬太陽光AM 1.5 G 照射下;(b)未照光下…………………..…..…………….…..97 圖3-3. 太陽能電池其IPCE與穿透度圖形於PEDOT:PSS (□) 與SPDPA (●)…………………………………………………………………………………....98 圖3-4. 主動層P3HT:PCBM之AFM高低圖形分別於:(a)PEDOT:PSS作基板下薄膜經由快成長; (b) PEDOT:PSS作基板下薄膜經由慢成長;(c) SPDPA 作基板下薄膜經由快成長; (d) SPDPA作基板下薄膜經由慢成長……………………………99 圖3-5. P3HT:PCBM慢成長的薄膜於ITO/PEDOT:PSS (□)、ITO/SPDPA (▲)的基板經由低掠角繞射衍射法…………………………………………………………100 圖3-6. 太陽能電池組成單一電洞注入的元件其J-V 圖形其中PEDOT (□) 與SPDPA於3500 rpm (▲)的系統中,其中X軸表是的電壓為操作電壓(Vappl)減去內建電場(Vbi=0.1 V).元件高分子整體厚度為220 nm (PEDOT:PSS的系統)以及206 nm (SPDPA的系統).……………………….……………………………………..………101 圖4-1. TiO2薄膜製備與傳統型元件、反置型元件之比較…………………….….102 圖4-2. TiO2薄膜光電特性分析: (a) 紫外光光電子光譜圖;(b) 吸收光譜圖,內插圖型為TiO2薄膜塗佈在ITO玻璃上的AFM高低圖形……………………….…113 圖4-3. 太陽能電池之元件分析:傳統型元件(□);反置型元件使用TiO2作修飾層(▲)、未使用TiO2作修飾層(◆)進行模擬太陽光源之照射AM 1.5G (100mW/cm2),其中包含元件各材料的能階圖………........................…..……..…115 圖4-4. 反置型太陽能電池之元件分析:未使用SPDPA進行修飾時 Au (△)的系統與Ag (○)的系統;使用SPDPA進行修飾時Au (▲)的系統Ag (●)的系統在進行模擬太陽光源的照射AM 1.5G (100mW/cm2). …………………………………...….116 圖4-5. 紫外光光電子光譜圖二次電子截取區域之量測在蒸鍍上不同厚度的Au: (a) P3HT:PCBM與;(b) P3HT:PCBM/SPDPA……………………………………..117 圖4-6. 傳統型(□)與反置型(▲)太陽能電池空氣儲放測試下的參數紀錄: (a)光轉換效率值(PCE)、(b)開路電壓(Voc)、(c)短路電流(Jsc)、(d)填充因子(FF)………..119 表目錄 表3-1. PEDOT:PSS與SPDPA作電洞收集層高分子界面特性與厚度..…………94 表3-2. 各種電洞收集層修飾其元件效能…………………………………………...…94 流程圖2-1. 磺酸化聚二苯胺合成流程圖.................................................................84

    1. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
    2. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
    3. A. J. Heeger, J. Phys. Chem. B, 105, 8475 (2001).
    4. A. Moliton and R. C Hiorns, polym. Int., 53, 1397 (2004).
    5. L. Zuppiroli, M. N. Bussac, S. Paschen, O. Chauvet and L. Forro, Phys. Rev. B 50, 5196 (1994).
    6. J. L. Brdas, R. R. Chance and R. Silbey, Phys. Rev. B., 26, 5843 (1982).
    7. J. L. Brdas, R. R. Chance, R. Silbey, G. Nicolas and P. Durand, J. Chem. Phys. 77, 371 (1982)
    8. J. L. Brdas, R. R. Chance and R. H. Baughman, Int. J. Quantum Chem. S 15, 231 (1981).
    9. A. B. Kaiser, Phys. Rev. B 40, 2806 (1989).
    10. C. Moreau, R. Antony, A. Moliton and B. Franois, Adv. Mat. Opt. Electron 7, 281 (1997).
    11. J. L. Brdas, R. R. Chance, R. Silbey, Nicolas Gand Durand P, Phys. Rev. B 26, 371 (1982).
    12. L. Schmidt-Mende, A. Fechtenktter, K. Mllen, E. Moons, R. H. Friend and J. D. MacKenzie, Science 293, 1119 (2001).
    13. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2024 (1963).
    14. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    15. D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    16. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
    17. D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    18. A. J. Heeger and D. Braun (UNIAX), WO-B 92/16023 (1992).
    19. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Brdas, M. Lgdlund and W. R. Salaneck, Nature 397, 121 (1999).
    20. A. J. Campbell, D. C. Bradley and H. Antoniadis, Appl. Phys. Lett. 79, 2133 (2001).
    21. B. S. Chua,F. Cacialli, J. E. Davises, N. Feeder, R. H. Friend,A. B. Holmes, E. A. Marseglia, S. C. Moratti, J. L. Brdas and D. A. os Santos, Mat Res Soc Symp Proc: Symposium L 488, 87 (1998).
    22. V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett., 70, 2954 (1997).
    23. L. Hou, F. Huang, W. Zeng, J. Peng and Y. Cao, Appl. Phys. Lett. 2005, 87, 153509.
    24. J. S. Kim, M. Granstrm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
    25. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Appl. Phys. Lett., 68, 447 (1999).
    26. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik and W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
    27. R. W. T. Higgins, N. A. Zaidi and A. P. Monkman, Adv. Funct. Mater., 11, 407 (2001).
    28. C. Tengstedt, A. Crispin, C. H. Hsu, C. Zhang, I. D. Park and W. R. Salaneck, Org. Electron., 6, 21 (2005).
    29. T. W. Lee, Y. S. Chung, O. Kwon and J. J. Park, Adv. Funct. Mater., 17, 390 (2007).
    30. M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu and E. P. Woo, Adv. Mater., 11, 241 (1999).
    31. X. Gong, D. Moses, A. J. Heeger, S. Liu and A. K.-Y. Jen, Appl. Phys. Lett., 83, 183 (2003).
    32. W. Shi, S. Fan, F. Huang, W.i Yang, R. Liu and Y. Cao, J. Mater. Chem., 16, 2387 (2006).
    33. J. S. Kim, R. H. Friend, I. Grizzi, J. H. Burroughtes, Appl. Phys. Lett., 87, 023506 (2005).
    34. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh and P. W. M. Blom, Adv. Mater., 17,621 (2005).
    35. S. Khodabakhsh, D. Poplayvskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata and T. S. Jones, Adv. Funct. Mater., 14,1205 (2004).
    36. B. Choi, J. Rhee and H. H. Lee, Appl. Phys. Lett., 79, 2109 (2001).
    37. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20,2376 (2008).
    38. J. S. Kim, J. H. Park, J. H. Lee, J. Jo D.Y. Kim and K. Cho, Appl. Phys. Lett., 91, 112111 (2007).
    39. J. X. Tang, T. Q. Li, L. S. Hung and C. S. Lee, Phys. Lett., 84, 73 (2004).
    40. S. E. Shaheen, D. S. Ginley and G. E. Jabbour, Mrs. Bull., 30, 10 (2005).
    41. B. O'Regan and M. Grtzel , Nature, 353, 737 (1999).
    42. A.Yakimov and S. R. Forrest, Appl. Phys. Lett., 80, 1667 (2002).
    43. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1474 (1992).
    44. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 62, 585 (1993).
    45. G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, Science, 270, 1789 (1995).
    46. W. Ma, C. Yang, X. Gong, L. Lee and A. J. Heeger, Adv. Funct. Mater., 15,1617 (2005).
    47. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 317, 222 (2007).
    48. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 18, 789 (2006).
    49. S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour, Appl. Phys. Lett., 79, 2996 (2001).
    50. J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998).
    51. C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen and N. S. Sariciftci, Synth. Met., 102, 861 (1999)
    52. P. Peumans and S.R. Forrest, Appl, Phys. Lett., 79, 126 (2001).
    53. H. Hoppe, N.S. Sariciftci, J. Mater. Res., 19, 1924 (2004).
    54. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, J. Appl, Phys, 94, 6849 (2003).
    55. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Fun. Mater., 11, 374 (2001).
    56. S.R. Forrest and Mrs Bull., 30, 28 (2005).
    57. C. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, SPRINGER (2003).
    58. G. Li, V. Shortriya, Y. Yao and Y. Yang, J. Appl. Phys, 98, 043704 (2005).
    59. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 4, 864 (2005).
    60. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).
    61. V. Shrotriya, Y. Yao, G. Li and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006).
    62. W. Wang, H. B. Wu, C. Y. Yang, C. Luo, Y. Zhang, J. W. Chen and Y. Cao, Appl. Phys. Lett., 90, 183512 (2007).
    63. C. J. Ko, Y. K. Lin and F. C. Chen, Adv. Mater., 19, 3520 (2007).
    64. M. M.Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen Angew. Chem. Int. Ed., 42, 3371 (2003).
    65. A. M. Ballantyne, L. Chen, J. Nelson, D. D.C. Bradley, Y. Astuti, A. Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy, and I. McCulloch, Adv. Mater. 19, 4544 (2007).
    66. M. M. Wienk, M. Turbiez, J. Gilot, and R. A. J. Janssen, Adv. Mater., 20, 2556 (2008).
    67. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mat., 6, 497 (2007).
    68. M. Lenes, G-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, Adv. Mater. 20, 2116 (2008).
    69. J. Kim, D. Y. Khang, J. H. Kim and H. H. Lee, Appl. Phys. Lett., 92, 133307 (2008).
    70. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 87, 013504 (2005).
    71. F. Zhang, M. Ceder and O. Ingans, Adv. Mater. 19, 1835 (2007).
    72. C. J. Ko, Y. K. Lin, F. C. Chen and C. W. Chu, Appl. Phys. Lett., 90, 063509 (2007).
    73. H. H. Liao, L. M. Chen, Z. Xu, G. Li and Y. Yang, Appl. Phys. Lett., 92, 173303 (2008).
    74. K. Lee, J. Y. Kim, S. H. Park, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Adv. Mater., 19, 2445 (2007).
    75. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20, 2376 (2008).
    76. R. Steim, S. A. Choulis, R. Schilinsky and C. J. Brabec, Appl. Phys. Lett., 92, 093303 (2008).
    77. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006).
    78. H. J. Bolink, E. Coronado, D.o Repetto, M. Sessolo, E. M. Barea, J. Bisquert, G. G. Belmonte, J. Prochazka and L. Kavan, Adv. Funct. Mater., 18, 145 (2008).
    79. A. Hadipour, B. De Boer and P. W. M. Blom, Adv. Funct. Mater., 18, 169 (2008).
    80. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf and C. J. Brabec, Adv. Mater., 20, 579 (2008).
    81. J. Hunag, G. Li, Y. Yang, Adv. Mater., 20, 415 (2008).
    82. J.Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater., 18, 572 (2006).
    83. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett., 91, 113520 (2007).
    84. T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich, M. C. Scharber, J. Brabec and K. Hingerl, J. Appl. Phys., 103, 084506 (2008).
    85. X. Crispin, S. Marciniak, W. Osikowicz, G Zotti, A. W. Denier van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver and W. R. Salaneck, J. Poly. Sci. B, 41, 2561 (2003).
    86. A R. V. envenho, J. P. M. Serbena, R. Lessmann and I. A. Hmmelgen, Braz. J. Phys., 35, 1016 (2005).
    87. B. Xu, J. Choi, A. N. Caruso and P. A. Dowben, Appl. Phys. Lett., 80, 4342 (2002).
    88. J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein and A. G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
    89. C. F. Chang, W. C. Chen, T. C. Wen and A. Gopalan, Electrochem Soc, 149, E298. (2002).
    90. A. V. Orlov, S. Z. Ozkan and G. P. Karpacheva, Polym. Sci. Ser. B, 48, 11 (2006).
    91. F. Hua and E. Ruckenstein, Macromolecules, 36, 9971 (2003).
    92. A. C. Kolbert, S. Caldarelli, K. F. Their, N. S. Sariciftci, Y. Cao andA. J. Heeger, Phys. Rev. B, 51, 1541 (1995).
    93. I. Yu, B. A. Deore, C. L. Recksiedler, T. C. Corkery, A. S. Abd-El-Aziz and M. S. Freund, Macromolecules, 38, 10022 (2005).
    94. T. C. Wen, C. Sivakumar and A. Gopalan , Mater. Lett., 54, 430 (2002).
    95. M. M. de Kok, M. Buechel, S. I. E. Vulto, P. V. A. Weijer, E. A. Meulenkamp, de S. H. P. Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens, van Elsbergen V, Phys Stat Sol (a), 2004; 201:1342.
    96. G. M. do Nascimento, J. E. Pereira da Silva, S. I. Cordoba de Torresi and M. L. A. Temperini, Marcomolecules, 35, 121 (2002).
    97. F. Zhang, A. Petr, H. Peisert, M. Knupfer and L. Dunsch, J. Phys. Chem. B, 108, 17301 (2004).
    98. C. J. Brabec, S. E. Shaheen, C. Winder, S. Sariciftci and P. Denk, Appl. Phys. Lett., 80, 1288 (2002).
    99. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummeien and M. T. Rispens, J. Appl. Phys., 94, 6849 (2003).
    100. D. H. Kim, Y. D. Park, Y. Jang, H. Y, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chuang, C. Chang, M. Joo and C. Y. Ryu, Adv. Funct. Mater., 15, 77 (2005).
    101. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater., 16, 2016 (2006).
    102. M. Zenkiewicz, Polym. Test., 26, 14 (2007).
    103. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. K. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley and J. Nelson, Nat. Mater., 7. 158 (2007).
    104. R. J. Kline, M. D. Mcgehee and M. F. Toney Nat. Mater., 5. 222 (2006).
    105. V. Shrotriya, Y. Yao, G. Li and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006).
    106. M. P. de Jong, L. J. van Ijzendoom, and M. J. A. de Voigt, Appl. Phys. Lett., 77, 2255 (2000).
    107. P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm and R. A. J. Janssen, Adv. Mater., 15, 118 (2003).
    108. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello and D. D. C. Bradley, Adv. Funct. Mater., 15, 290 (2005).
    109. H. Ishii, K. Sugiyama, E. Ito and K. Seki, Adv. Mater., 11, 605 (1999).
    110. H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsch, J. Fink, Appl. Phys. Lett., 83, 3930 (2003).
    111. H. Peisert, A. Petr, L. Dunsch, T.Chass, M. Knupfer, ChemPhysChem, 8, 386 (2007).
    112. M. S. A. Abdou, F. P. Orifino, Y. Son, S. Holdcroft, J. Am. Chem. Soc. 1997, 119, 4518.
    113. A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev., 95, 735 (1995).
    114. V. E. Henrich, P. A. Cox, The surface Science of Metal Oxides, Cambridge University Press, Cambridge (1994).
    115. C. Noguera, physics and chemistry of oxide surfaces, Cambridge University Press, Cambridge (1996).

    下載圖示 校內:2009-12-12公開
    校外:2009-12-12公開
    QR CODE