| 研究生: |
李宬諺 Li, Chen-Yan |
|---|---|
| 論文名稱: |
磺酸化聚二苯胺之合成及其應用於有機光電元件 Synthesis of sulfonated poly(diphenylamine) and its application to organic electro-optical device |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 有機光電元件 |
| 外文關鍵詞: | organic electro-optical device |
| 相關次數: | 點閱:38 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文利用導電性高分子磺酸化聚二苯胺當作為電洞傳輸的材料,應用在相關的高分子發光二極體與高分子太陽能電池中,其中研究的主題包含了三個部分。
第一部分包含了高分子的合成與物性的分析,並進一步的應用在高分子發光二極體中,關於高分子的物性分析包含了氫與碳的核磁共振光譜圖、傅立葉轉換紅外線光譜圖、元素分析、可見光-紫外光吸收光譜圖、拉曼光譜圖、紫外光光電子光譜圖與熱重分析儀等,由紫外光光電子光譜圖證實了磺酸根的加入讓磺酸化聚二苯胺的功函數提升至5.2 eV,另外其在可見光區域擁有非常高的穿透度並且也有適中的導電度符合了當作電洞注入層材料的潛力,進一步的組裝成高分子發光二極體元件,在MEH-PPV當作發光層的系統中其發光效率可以達2.0 cd/A,可以媲美商業化電洞注入層材料PEDOT:PSS。
第二部分的研究,將磺酸化聚二苯胺利用在高分子太陽能電池中當作電洞收集層,於磺酸化聚二苯胺的系統中其光轉換效率可達4.2 %而填充因子可達0.68,這些效能的表現都超過了商業化電洞收集層材料PEDOT:PSS(光轉換效率達3.6 %、填充因子達0.65),因為主動層中的型態與結構在兩不同的電洞收集層中是不一樣的,可以利用原子力顯微鏡與低掠角繞射X射線衍射法得到證實。
第三個部分利用磺酸化聚二苯胺當作上修飾的電洞收集層在反置型的高分子太陽能電池,因為其溶解與成膜性好克服界面相容性的問題(主動層為疏水性),此反置型高分子太陽能電池即利用二氧化鈦當作電子收集層而磺酸化聚二苯胺當作電洞收集層,此二氧化鈦薄膜具有良好的平整性修飾了ITO玻璃的表面並且有不錯的電子收集能力,反置型的元件其光轉換效率可達3.91 % 媲美了傳統型的元件,並且大幅改善了元件壽命的問題,另外在此元件中此兩收集層具有好的界面修飾性,與主動層之間產生了歐姆接觸此可以利用元件的開路電壓得到證據,而磺酸化聚二苯胺也可以改善主動層與金屬之間界面偶極的問題。
In this dissertation, sulfonated poly(diphenylamine) (SPDPA) was used as hole transporting material in the polymer light-emitting device (PLED) and polymer photovoltaic (PV) cell. The investigations included three sections as follows.
The first section reported the synthesis and characteristics of SPDPA as hole-injection layer (HIL) in PLED. SPDPA was characterized in terms of 1H NMR, 13C NMR, FT-IR, Elemental analysis (EA), UV-vis, Raman, ultraviolet photoelectron spectroscopy (UPS) and TGA thermal stability measurement. The UPS spectra showed that SPDPA possessed 5.2 eV work function after inserting –SO3H groups. Besides, the high transparence in visible region and acceptable conductivity were beneficial as HIL material. The electroluminescence efficiency of polymer light emitting diode using poly(2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylene vinylene) (MEH- PPV) as an active layer and SPDPA as HIL can be reached 2.0 cd/A, showing the slightly better performance than that using PEDOT:PSS as HIL.
The secondary section reported that SPDPA used as an effective hole-collecting layer (HCL) in polymer PV cell. PV cells of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester used as the active layer with SPDPA as HCL showed the better power conversion efficiency (4.2%) and fill factor (0.68) than those with commercial poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (Baytron AI 4083) (3.6% and 0.65). The morphology change of the active layer was observed using atomic force microscopy and grazing-incidence X-ray diffraction. The enhanced device performance is attributed to the improved hole mobility and the increased crystallinity of P3HT due to the properties of SPDPA.
The third section reported that SPDPA used as a top-contact HCL in the inverted polymer PV cell. An inverted device was fabricated using titania (TiO2) as the electron collecting layer (ECL) and SPDPA as HCL. Smooth TiO2 film with good electron collecting ability was easily formed using the spin-coating process. The PCE was 3.91 %, the same as that of a conventional device. This inverted device is ascertained to maintain 2.82% PCE after 400 hours of air-storage. Because of the appropriate work functions of ECL and HCL, the interfaces at the active layer have the ohmic contacts those approach the ideal value of open circuit voltage. SPDPA helps improve the interfacial dipole effect between the active layer and the metal, as verified by in-situ ultraviolet photoelectron spectroscopic data.
1. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang and A. J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
2. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
3. A. J. Heeger, J. Phys. Chem. B, 105, 8475 (2001).
4. A. Moliton and R. C Hiorns, polym. Int., 53, 1397 (2004).
5. L. Zuppiroli, M. N. Bussac, S. Paschen, O. Chauvet and L. Forro, Phys. Rev. B 50, 5196 (1994).
6. J. L. Brdas, R. R. Chance and R. Silbey, Phys. Rev. B., 26, 5843 (1982).
7. J. L. Brdas, R. R. Chance, R. Silbey, G. Nicolas and P. Durand, J. Chem. Phys. 77, 371 (1982)
8. J. L. Brdas, R. R. Chance and R. H. Baughman, Int. J. Quantum Chem. S 15, 231 (1981).
9. A. B. Kaiser, Phys. Rev. B 40, 2806 (1989).
10. C. Moreau, R. Antony, A. Moliton and B. Franois, Adv. Mat. Opt. Electron 7, 281 (1997).
11. J. L. Brdas, R. R. Chance, R. Silbey, Nicolas Gand Durand P, Phys. Rev. B 26, 371 (1982).
12. L. Schmidt-Mende, A. Fechtenktter, K. Mllen, E. Moons, R. H. Friend and J. D. MacKenzie, Science 293, 1119 (2001).
13. M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2024 (1963).
14. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
15. D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
16. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539 (1990).
17. D. Braun and A.J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
18. A. J. Heeger and D. Braun (UNIAX), WO-B 92/16023 (1992).
19. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. dos Santos, J. L. Brdas, M. Lgdlund and W. R. Salaneck, Nature 397, 121 (1999).
20. A. J. Campbell, D. C. Bradley and H. Antoniadis, Appl. Phys. Lett. 79, 2133 (2001).
21. B. S. Chua,F. Cacialli, J. E. Davises, N. Feeder, R. H. Friend,A. B. Holmes, E. A. Marseglia, S. C. Moratti, J. L. Brdas and D. A. os Santos, Mat Res Soc Symp Proc: Symposium L 488, 87 (1998).
22. V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, Appl. Phys. Lett., 70, 2954 (1997).
23. L. Hou, F. Huang, W. Zeng, J. Peng and Y. Cao, Appl. Phys. Lett. 2005, 87, 153509.
24. J. S. Kim, M. Granstrm. R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast and F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
25. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Appl. Phys. Lett., 68, 447 (1999).
26. T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik and W. J. Feast, Appl. Phys. Lett., 75, 1679 (1999).
27. R. W. T. Higgins, N. A. Zaidi and A. P. Monkman, Adv. Funct. Mater., 11, 407 (2001).
28. C. Tengstedt, A. Crispin, C. H. Hsu, C. Zhang, I. D. Park and W. R. Salaneck, Org. Electron., 6, 21 (2005).
29. T. W. Lee, Y. S. Chung, O. Kwon and J. J. Park, Adv. Funct. Mater., 17, 390 (2007).
30. M. Redecker, D. D. C. Bradley, M. Inbasekaran, W. W. Wu and E. P. Woo, Adv. Mater., 11, 241 (1999).
31. X. Gong, D. Moses, A. J. Heeger, S. Liu and A. K.-Y. Jen, Appl. Phys. Lett., 83, 183 (2003).
32. W. Shi, S. Fan, F. Huang, W.i Yang, R. Liu and Y. Cao, J. Mater. Chem., 16, 2387 (2006).
33. J. S. Kim, R. H. Friend, I. Grizzi, J. H. Burroughtes, Appl. Phys. Lett., 87, 023506 (2005).
34. B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh and P. W. M. Blom, Adv. Mater., 17,621 (2005).
35. S. Khodabakhsh, D. Poplayvskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata and T. S. Jones, Adv. Funct. Mater., 14,1205 (2004).
36. B. Choi, J. Rhee and H. H. Lee, Appl. Phys. Lett., 79, 2109 (2001).
37. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20,2376 (2008).
38. J. S. Kim, J. H. Park, J. H. Lee, J. Jo D.Y. Kim and K. Cho, Appl. Phys. Lett., 91, 112111 (2007).
39. J. X. Tang, T. Q. Li, L. S. Hung and C. S. Lee, Phys. Lett., 84, 73 (2004).
40. S. E. Shaheen, D. S. Ginley and G. E. Jabbour, Mrs. Bull., 30, 10 (2005).
41. B. O'Regan and M. Grtzel , Nature, 353, 737 (1999).
42. A.Yakimov and S. R. Forrest, Appl. Phys. Lett., 80, 1667 (2002).
43. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science, 258, 1474 (1992).
44. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 62, 585 (1993).
45. G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, Science, 270, 1789 (1995).
46. W. Ma, C. Yang, X. Gong, L. Lee and A. J. Heeger, Adv. Funct. Mater., 15,1617 (2005).
47. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante and A. J. Heeger, Science, 317, 222 (2007).
48. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater., 18, 789 (2006).
49. S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour, Appl. Phys. Lett., 79, 2996 (2001).
50. J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998).
51. C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. Janssen and N. S. Sariciftci, Synth. Met., 102, 861 (1999)
52. P. Peumans and S.R. Forrest, Appl, Phys. Lett., 79, 126 (2001).
53. H. Hoppe, N.S. Sariciftci, J. Mater. Res., 19, 1924 (2004).
54. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, J. Appl, Phys, 94, 6849 (2003).
55. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Fun. Mater., 11, 374 (2001).
56. S.R. Forrest and Mrs Bull., 30, 28 (2005).
57. C. Brabec, V. Dyakonov, J. Parisi and N. S. Sariciftci, SPRINGER (2003).
58. G. Li, V. Shortriya, Y. Yao and Y. Yang, J. Appl. Phys, 98, 043704 (2005).
59. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, Nat. Mater., 4, 864 (2005).
60. W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005).
61. V. Shrotriya, Y. Yao, G. Li and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006).
62. W. Wang, H. B. Wu, C. Y. Yang, C. Luo, Y. Zhang, J. W. Chen and Y. Cao, Appl. Phys. Lett., 90, 183512 (2007).
63. C. J. Ko, Y. K. Lin and F. C. Chen, Adv. Mater., 19, 3520 (2007).
64. M. M.Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, and R. A. J. Janssen Angew. Chem. Int. Ed., 42, 3371 (2003).
65. A. M. Ballantyne, L. Chen, J. Nelson, D. D.C. Bradley, Y. Astuti, A. Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy, and I. McCulloch, Adv. Mater. 19, 4544 (2007).
66. M. M. Wienk, M. Turbiez, J. Gilot, and R. A. J. Janssen, Adv. Mater., 20, 2556 (2008).
67. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mat., 6, 497 (2007).
68. M. Lenes, G-J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen and P. W. M. Blom, Adv. Mater. 20, 2116 (2008).
69. J. Kim, D. Y. Khang, J. H. Kim and H. H. Lee, Appl. Phys. Lett., 92, 133307 (2008).
70. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 87, 013504 (2005).
71. F. Zhang, M. Ceder and O. Ingans, Adv. Mater. 19, 1835 (2007).
72. C. J. Ko, Y. K. Lin, F. C. Chen and C. W. Chu, Appl. Phys. Lett., 90, 063509 (2007).
73. H. H. Liao, L. M. Chen, Z. Xu, G. Li and Y. Yang, Appl. Phys. Lett., 92, 173303 (2008).
74. K. Lee, J. Y. Kim, S. H. Park, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Adv. Mater., 19, 2445 (2007).
75. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K.-Y. Jen, Adv. Mater., 20, 2376 (2008).
76. R. Steim, S. A. Choulis, R. Schilinsky and C. J. Brabec, Appl. Phys. Lett., 92, 093303 (2008).
77. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006).
78. H. J. Bolink, E. Coronado, D.o Repetto, M. Sessolo, E. M. Barea, J. Bisquert, G. G. Belmonte, J. Prochazka and L. Kavan, Adv. Funct. Mater., 18, 145 (2008).
79. A. Hadipour, B. De Boer and P. W. M. Blom, Adv. Funct. Mater., 18, 169 (2008).
80. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf and C. J. Brabec, Adv. Mater., 20, 579 (2008).
81. J. Hunag, G. Li, Y. Yang, Adv. Mater., 20, 415 (2008).
82. J.Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater., 18, 572 (2006).
83. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett., 91, 113520 (2007).
84. T. Ameri, G. Dennler, C. Waldauf, P. Denk, K. Forberich, M. C. Scharber, J. Brabec and K. Hingerl, J. Appl. Phys., 103, 084506 (2008).
85. X. Crispin, S. Marciniak, W. Osikowicz, G Zotti, A. W. Denier van der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver and W. R. Salaneck, J. Poly. Sci. B, 41, 2561 (2003).
86. A R. V. envenho, J. P. M. Serbena, R. Lessmann and I. A. Hmmelgen, Braz. J. Phys., 35, 1016 (2005).
87. B. Xu, J. Choi, A. N. Caruso and P. A. Dowben, Appl. Phys. Lett., 80, 4342 (2002).
88. J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein and A. G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
89. C. F. Chang, W. C. Chen, T. C. Wen and A. Gopalan, Electrochem Soc, 149, E298. (2002).
90. A. V. Orlov, S. Z. Ozkan and G. P. Karpacheva, Polym. Sci. Ser. B, 48, 11 (2006).
91. F. Hua and E. Ruckenstein, Macromolecules, 36, 9971 (2003).
92. A. C. Kolbert, S. Caldarelli, K. F. Their, N. S. Sariciftci, Y. Cao andA. J. Heeger, Phys. Rev. B, 51, 1541 (1995).
93. I. Yu, B. A. Deore, C. L. Recksiedler, T. C. Corkery, A. S. Abd-El-Aziz and M. S. Freund, Macromolecules, 38, 10022 (2005).
94. T. C. Wen, C. Sivakumar and A. Gopalan , Mater. Lett., 54, 430 (2002).
95. M. M. de Kok, M. Buechel, S. I. E. Vulto, P. V. A. Weijer, E. A. Meulenkamp, de S. H. P. Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens, van Elsbergen V, Phys Stat Sol (a), 2004; 201:1342.
96. G. M. do Nascimento, J. E. Pereira da Silva, S. I. Cordoba de Torresi and M. L. A. Temperini, Marcomolecules, 35, 121 (2002).
97. F. Zhang, A. Petr, H. Peisert, M. Knupfer and L. Dunsch, J. Phys. Chem. B, 108, 17301 (2004).
98. C. J. Brabec, S. E. Shaheen, C. Winder, S. Sariciftci and P. Denk, Appl. Phys. Lett., 80, 1288 (2002).
99. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummeien and M. T. Rispens, J. Appl. Phys., 94, 6849 (2003).
100. D. H. Kim, Y. D. Park, Y. Jang, H. Y, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chuang, C. Chang, M. Joo and C. Y. Ryu, Adv. Funct. Mater., 15, 77 (2005).
101. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Adv. Funct. Mater., 16, 2016 (2006).
102. M. Zenkiewicz, Polym. Test., 26, 14 (2007).
103. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. K. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley and J. Nelson, Nat. Mater., 7. 158 (2007).
104. R. J. Kline, M. D. Mcgehee and M. F. Toney Nat. Mater., 5. 222 (2006).
105. V. Shrotriya, Y. Yao, G. Li and Y. Yang, Appl. Phys. Lett., 89, 063505 (2006).
106. M. P. de Jong, L. J. van Ijzendoom, and M. J. A. de Voigt, Appl. Phys. Lett., 77, 2255 (2000).
107. P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L. H. Slooff, W. J. H. van Gennip, P. Jonkheijm and R. A. J. Janssen, Adv. Mater., 15, 118 (2003).
108. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello and D. D. C. Bradley, Adv. Funct. Mater., 15, 290 (2005).
109. H. Ishii, K. Sugiyama, E. Ito and K. Seki, Adv. Mater., 11, 605 (1999).
110. H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsch, J. Fink, Appl. Phys. Lett., 83, 3930 (2003).
111. H. Peisert, A. Petr, L. Dunsch, T.Chass, M. Knupfer, ChemPhysChem, 8, 386 (2007).
112. M. S. A. Abdou, F. P. Orifino, Y. Son, S. Holdcroft, J. Am. Chem. Soc. 1997, 119, 4518.
113. A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev., 95, 735 (1995).
114. V. E. Henrich, P. A. Cox, The surface Science of Metal Oxides, Cambridge University Press, Cambridge (1994).
115. C. Noguera, physics and chemistry of oxide surfaces, Cambridge University Press, Cambridge (1996).