簡易檢索 / 詳目顯示

研究生: 曾譯葦
Tseng, Yi-Wei
論文名稱: 低溫氧化鋅奈米結構通電固態摻雜機制與光電特性研究
Electrical Induced Crystallization Mechanism and Optoelectronic Properties of ZnO Nanostructures using Low-Temperature Solution Method
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 氧化鋅通電結晶製程水溶液法奈米線摻雜
外文關鍵詞: ZnO, solution method, electrical current induced crystallization (EIC), doped ZnO nanowires
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,吾人首度以通電結晶製程(Electrical Induced Crystallization Mechanism, EIC)將金屬原子摻雜到奈米結構當中,藉由低溫的通電固態摻雜製程,可製作出雙層奈米線結構,並將其應用於低溫奈米光電元件當中,此技術可廣泛應用於低溫奈米元件中。
    近年來氧化鋅奈米結構,具有高表面積、量子侷限效應及高結晶品質等良好性質與應用潛力,例如:氣體感測器,太陽能電池和光電元件。本研究主要探討以通電結晶固態摻雜製程將金屬(鋁;銀)原子摻雜至氧化鋅奈米結構。
    本實驗使用磁控濺鍍法於矽基板上沉積 ZnO-Al 及 ZnO-Ag 雙層膜後,透過低溫水溶液法成長氧化鋅奈米線,完成雙層膜與奈米線之複合結構。經由通電結晶製程(EIC)對試片結構中的金屬膜作為導電通道,透過對導電層施加直流電所誘發的焦耳熱(約攝氏200度),可大幅提升薄膜與奈米結構結晶度。
    通電結晶製程不僅能誘發金屬原子進行界面擴散,更可以進一步的摻雜金屬至氧化鋅奈米線中。藉由調控通電的電壓電流,可調整金屬原子摻雜至奈米線中的深度與比例,形成雙層奈米線(ZnO/metal-ZnO)。本研究在固態摻雜製程溫度約在攝氏200度,因此通電結晶製程可應用於低溫奈米結構元件製作。

    In this study, We’re using low-temperature solid-state doping process to metal- doped nanostructure by Electrical Induced Crystallization Mechanism (EIC), and applied it to low temperature nano electro-optic devices.
    ZnO nanostructured material having many unique properties(large surface area, good crystal quality and increased quantum confinement effect) with potential applications, such as in gas sensors , DSSCs, and Opto- devices. This study focuses on the properties of Metal(Al; Ag)- doped ZnO nanostructure prepared by electric current induced crystallization(EIC) process.
    Both ZnO nanowire and metal film(Al; Ag) had combined on SiO2 as the wires/ films structure, and the metal film was a conductive channel to perform the electrical induced crystallization (EIC). Under an electrical current, direct current (DC) raised the temperature(~200 degrees Celsius) of film and improved the crystallization of nanostructure.
    The effects of EIC not only induced metal atomic interface diffused mechanism, but also doped metal on the roots of ZnO nanowires to form double layers wire(ZnO/metal- ZnO). The metal doped concentration and distance of ZnO nanowire had increased with decreasing the electrical duration. Also, the electrical current induced temperature was ~200 degrees Celsius(solid-state doping process) and so could be applied to low temperature nanostructures device.

    目 錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅷ 圖目錄 Ⅸ 1-1前言 1 1-2實驗動機與目的 2 第二章 理論基礎與文獻回顧 3 2-1 氧化鋅薄膜的結構與特性 3 2-1-1晶體結構 3 2-1-2導電性質 3 2-1-3光學性質 4 2-1-4應用特性與改善方向 4 2-2金屬薄膜與D/M性質 5 2-3濺鍍製程 5 2-4氧化鋅奈米線應用特性 6 2-5氧化鋅奈米線製備方法 6 2-5-1熱化學氣相法 7 2-5-2化學溶液合成法 7 2-6氧化鋅奈米線摻雜金屬原子製備方法 8 2-6-1熱化學氣相法 8 2-6-2化學合成摻雜方法 8 2-6-3熱擴散 8 2-7通電結晶摻雜製程特性 9 2-7-1通電熱處理 9 2-7-2通電摻雜 9 2-7-3氧化鋅與中間金屬層接觸前後界面能帶機制 10 2-8金屬-半導體-金屬光偵測器工作原理 10 第三章 實驗方法與設備 16 3-1實驗流程概述 16 3-2實驗材料準備 16 3-2-1濺鍍靶材與基板 16 3-2-2基板清洗 17 3-3 濺鍍製程參數 17 3-4氧化鋅奈米線成長 17 3-5熱擴散設備與條件 17 3-6通電儀器與條件 18 3-7蕭基接觸光偵測器量測設備 18 3-8薄膜微結構分析 18 3-8-1掃描式電子顯微鏡 (SEM)分析 18 3-8-2低掠角X光繞射儀量測 19 3-8-3穿透式電子顯微鏡(TEM)分析 19 3-9界面分析-化學分析電子儀(ESCA)鑑定 19 3-10光電性質分析 20 3-10-1四點探針分析 20 3-10-2拉曼光譜儀(Raman)檢測 20 第四章 結果與討論 28 4-1水溶液法合成氧化鋅奈米線結構特性 28 4-1-1種晶層氧化鋅膜顯微組織特徵 28 4-1-2氧化鋅奈米線與種晶層相互關係 28 4-1-3水溶液法參數對成長結構之影響 29 4-2熱擴散摻雜鋁元素對氧化鋅奈米線之影響 30 4-2-1水溶液法成長氧化鋅奈米線結構 30 4-2-2不同熱擴散條件對氧化鋅奈米線摻雜鋁之效應 31 4-2-3氧化鋅鋁奈米線顯微組織與擴散機制 31 4-3固態通電摻雜鋁對氧化鋅奈米結構之物理特性 33 4-3-1含導電層鋁膜之水溶液法成長氧化鋅奈米線結構 33 4-3-2固態通電之氧化鋅鋁奈米線結晶機制及顯微組織觀察 33 4-3-3固態通電誘發鋁擴散機制 35 4-3-4通電擴散結晶氧化鋅鋁奈米線拉曼特性 36 4-4氧化鋅奈米線∕銀結構之通電介面特性 37 4-4-1含導電層銀層之水溶液法成長氧化鋅奈米線結構 37 4-4-2通電結晶製程對銀摻雜氧化鋅奈米線誘發效應 38 4-4-3通電前後氧化鋅銀奈米線拉曼特性 39 4-5低溫氧化鋅奈米線金屬-半導體-金屬光偵測器 41 4-5-1暗電流與光響應頻譜特性分析 42 第五章 結果與討論 80 參考文獻 82

    [1] Zhu, H., Huepkes, J., Bunte, E., Owen, J., Huang, S. M. , “Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells”, Solar Energy Materials and Solar Cells., Vol.95(2011) , pp. 964-968.
    [2] Muller J, Rech B, Springer J, Vanecek M, “TCO and light trapping in silicon thin film solar cells”, Solar Energy , Vol.77(2004) , pp.917-930
    [3] T. Minanmi, “Transparent Conducting Oxide Semiconductors for Transparent Electrodes”, Semicond. Sci. Technol., Vol.20 (2005), pp. 35-44.
    [4] Claus Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt, “65 years of ZnO research – old and very recent results”, Phys. Status Solidi B 247, Vol. 6(2010), pp.1424–1447.
    [5] B.V. Mistry, P. Bhatt, K.H. Bhavsar, S.J. Trivedi, U.N. Trivedi , U.S. Joshi, “Growth and properties of transparent p-NiO/n-ITO (In2O3:Sn) p–n junction thin film diode”, Thin Solid Films,Vol. 519(2011) , pp.3840-3843.
    [6] Jaejin Song, Sangwoo Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”,J. Phys. Chem. C, Vol. 111(2007) , pp. 596-600.
    [7] P. X. Gao, Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process”, J. Phys. Chem. B, Vol.108(2004) , pp.7534-7537.
    [8] Kim H, Horwitz JS, Kim WH, Makinen AJ, Kafafi ZH, Chrisey DB, “Doped ZnO thin films as anode materials for organic light-emitting diodes”, Thin Solid Films,Vol.420(2002),pp. 539-543.
    [9] Yang YM, Lai H, Tao CY, Yang H, “Correlation of luminescent properties of ZnO and Eu doped ZnO nanorods”, Vol.21(2010) , pp.173-178.
    [10] Fei-Yi Hung, Jiunn-Der Liao, Truan-Sheng Lui,Li-Hui Chen, “Electrical current induced mechanism in microstructure and nano-indention of Al–Zn–Mg–Cu (AZMC) Al alloy thin film”, Current Applied Physics, (2011) , pp. 1-5.
    [11] T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg, and M. A. Rodriguez, T. J. Headley, “Precursor Structural Influences on the Final ZnO Nanoparticle Morphology from a Novel Family of Structurally Characterized Zinc Alkoxy Alkyl Precursors”, Chem. Mater., Vol.16 (2004) , pp. 3279-3288.
    [12] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of Preferred Orientation for ZnOx Films: Control of Self-texture”, J. Cryst. Growth, Vol.130 (1993) , pp. 269-279.
    [13] M. Izaki, and T. Omi, “Characterization of Transparent Zinc Oxide Films Prepared by Elecfrochemical Reaction”, J. Electrochem. Soc., Vol.144 (1997) , pp. 1949-1952.
    [14] D. C. Agarwal, R. S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S. A. Khan, D. K. Avasthi, J. C. Pivin, M. Kumar, J. Ghatak, and P. V. Satyam, “Synthesis and Characterization of ZnO Thin Film Grown by Electron Beam Evaporation”, J. Appl. Phys., Vol.99 (2006) , pp. 123105-1-123105-6.
    [15] Y. F. Mei, G. G. Siu, R. K. Y. Fu, P. K. Chu, Z. M. Li, and Z. K. Tang, “Room-temperature Electrosynthesized ZnO Thin Film with Strong (002) Orientation and Its Optical Properties”, Appl. Surf. Sci., Vol.252 (2006) , pp. 2973-2977.
    [16] A. P. Roth, J. B. Webb, and D. F. Williams, “Absorption Edge Shift in ZnO Thin Films at High Carrier Densities”, Solid State Commun., Vol.39 (1981) , pp. 1269-1271.
    [17] N. Kavasoglu, and A. S. Kavasoglu, “Metal–semiconductor Transition in Undoped ZnO Films Deposited by Spray Pyrolysis”, Physica B, Vol.403 (2008) , pp. 2807-2810.
    [18] C. Gumus, O. M. Ozkendir, H. Kavak, and Y. Ufuktepe, “Structural and Optical Properties of Zinc Oxide Thin Films Prepared by Spray Pyrolysis Method”, J. Optoelectron. Adv. M., Vol.8 (2006) , pp. 299-303.
    [19] Zhu, Y. F., Zhou, G. H., Ding, H. Y., Liu, A. H., Lin, Y. B., Li, N. L. , “Synthesis of highly-ordered hierarchical ZnO nanostructures and their application in dye-sensitized solar cells”, CRYSTAL RESEARCH AND TECHNOLOGY, Vol.45 (2010) , pp.1075-1078.
    [20]J. Hong, H. Paik, H. Hwang, S. Lee, A. J. deMello, K. No, “The effect of growth temperature on physical properties of heavily doped ZnO:Al films”,Phys. Status. Solidi A,Vol.206 (2009), pp.697-703.
    [21] D. R. Sahu, J. L. Huang, “ High Quality Transparent Conductive ZnO/Ag/ZnO Multilayer Films Deposited at Room Temperature”,Thin Solid Films , Vol.515(2006) , pp.876-879.
    [22]F. Al-Kuhaili, M. A. Al-Maghrabi, S. M. A. Durrani, I. A. Bakhtiari, “Investigation of ZnO/Al/ZnO multilayers as transparent conducting coatings”,J. Phys. D: Appl. Phys. ,Vol.41(2008) , pp.215302 .
    [23] H. J. Song, Y. H. Kim, J. I. Han, “ Development of Ultrafine Indium Tin Oxide (ITO) Nanoparticle for Ink-Jet Printing by Low-Temperature Synthetic Method”, IEEE Trans. Nanotech. Vol.7(2008) , pp.172-176 .
    [24] D. A. Hughes, M. E. Kassner, M. G. Stout, J. S. Vetrano, “Metal Forming at the Center of Excellence for the Synthesis and Processing of Advanced Materials”, JOM, Vol.50(1998), no.6, pp. 16-21.
    [25] M. Kawamura, D. Fukuda, Y. Inami, Y. Abe, K. Sasaki, “Thermally stable very thin Ag films for electrodes”, J. Vac. Sci. Technol. A, Vol. 27(2009), no. 4, pp. 975-978 .
    [26] S. M. Rossnagel, “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1989 pp. 341-343.
    [27] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, Westwood, New Jersey, 1998 pp.330-333.
    [28] M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film hetero junction light-emitting diodes”,Applied Physics Letters, Vol.88(2006) , pp.202105.
    [29]J. Y. Chen, C. J. Pan, F. C. Tsao, C. H. Kuo, G. C. Chi, B. J. Pong, C. Y. Chang, D. P. Norton, S. J. Pearton, “Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst”, Vacuum, Vol.83(2009), pp.1076-1079.
    [30] X. Wang, J. Song, Jin Liu, Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science, Vol. 316(2007) , 5821, pp. 102-105.
    [31] M. H. Huang, , S. F. Mao, H. Yan, H. Wu, Y. Kind, H. Weber, E. Russo, R. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers ”,Science 2001, 292, pp.1897-1899.
    [32] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Advanced Materials,Vol.15(2003), pp.464-466.
    [33] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Applied Physics Letters, Vol.88(2006), 023111.
    [34] Sining Yun, Juneyoung Lee, Jooyoung Chung, Sangwoo Lim, “Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping”,Journal of Physics and Chemistry of Solids,Vol.71(2010), pp. 1724-1731
    [35] S. N. Bai, H. H. Tsai, T. Y. Tseng, “Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method”, Thin Solid Films,Vol.516(2007), pp.155-158.
    [36] H. J. Park, J. H. Park, J. I. Choi, J. Y. Lee, J. H. Chae, and D. Kim, “Fabrication of Transparent Conductive Films with a Sandwich Structure Composed of ITO/Cu/ITO”, Vacuum, Vol.83 (2009) , pp. 448-450.
    [37] M. Eskandari, V. Ahmadi, S.H. Ahmadi, “Growth of Al-doped ZnO nanorod arrays on the substrate at low temperature”, Physica E Vol.42(2010) , pp.1683-1686
    [38] T. T. Loan, N. N. Long, L. H. Ha, J. Phys. D, “Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method”, Appl. Phys. ,Vol.42(2009), pp.065412.
    [39] Y. S. Min, E. J. Bae, U. J. Kim, W. Parka, “Direct Growth of Single-walled Carbon Nanotubes on Conducting ZnO Films and Its Field Emission Properties”, Appl. Phys. Lett., Vol.89 (2006) pp. 113116-1-113116-3.
    [40] S. Naga, M. Tamekawa, T. Terashita, H. Okada, H. Anada, H. Onnagawa, “Electrical properties of organic electroluminescent devices with aluminium alloy cathode ”, Synthetic Metals,Vol.91(1997),pp.129-130.
    [41] H. Han, N. D. Theodore, and T. L. Alford, “Improved Conductivity and Mechanism of Carrier Transport in Zinc Oxide with Embedded Silver Layer”, J. Appl. Phys., Vol.103 (2008) , pp. 013708-1-013708-8.
    [42] F. M. Smits, "Measurement of Sheet Resisitivities with the Four-Point Probe", Bell System Technical Journal, Vol.37 (1958) pp. 711-718.
    [43] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman Scattering and Biophysics”, J. Phys.: Condens. Matter, Vol.14 (2002) , pp. 597-624.
    [44] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) structures” ,Solid-State Electronics, Vol. 14(1971), pp. 1209.
    [45] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films” , Thin Solid Films, Vol. 280(1996) , pp. 20 - 25

    下載圖示 校內:2013-07-12公開
    校外:2013-07-12公開
    QR CODE