研究生: |
曾譯葦 Tseng, Yi-Wei |
---|---|
論文名稱: |
低溫氧化鋅奈米結構通電固態摻雜機制與光電特性研究 Electrical Induced Crystallization Mechanism and Optoelectronic Properties of ZnO Nanostructures using Low-Temperature Solution Method |
指導教授: |
洪飛義
Hung, Fei-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 氧化鋅 、通電結晶製程 、水溶液法 、奈米線摻雜 |
外文關鍵詞: | ZnO, solution method, electrical current induced crystallization (EIC), doped ZnO nanowires |
相關次數: | 點閱:98 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,吾人首度以通電結晶製程(Electrical Induced Crystallization Mechanism, EIC)將金屬原子摻雜到奈米結構當中,藉由低溫的通電固態摻雜製程,可製作出雙層奈米線結構,並將其應用於低溫奈米光電元件當中,此技術可廣泛應用於低溫奈米元件中。
近年來氧化鋅奈米結構,具有高表面積、量子侷限效應及高結晶品質等良好性質與應用潛力,例如:氣體感測器,太陽能電池和光電元件。本研究主要探討以通電結晶固態摻雜製程將金屬(鋁;銀)原子摻雜至氧化鋅奈米結構。
本實驗使用磁控濺鍍法於矽基板上沉積 ZnO-Al 及 ZnO-Ag 雙層膜後,透過低溫水溶液法成長氧化鋅奈米線,完成雙層膜與奈米線之複合結構。經由通電結晶製程(EIC)對試片結構中的金屬膜作為導電通道,透過對導電層施加直流電所誘發的焦耳熱(約攝氏200度),可大幅提升薄膜與奈米結構結晶度。
通電結晶製程不僅能誘發金屬原子進行界面擴散,更可以進一步的摻雜金屬至氧化鋅奈米線中。藉由調控通電的電壓電流,可調整金屬原子摻雜至奈米線中的深度與比例,形成雙層奈米線(ZnO/metal-ZnO)。本研究在固態摻雜製程溫度約在攝氏200度,因此通電結晶製程可應用於低溫奈米結構元件製作。
In this study, We’re using low-temperature solid-state doping process to metal- doped nanostructure by Electrical Induced Crystallization Mechanism (EIC), and applied it to low temperature nano electro-optic devices.
ZnO nanostructured material having many unique properties(large surface area, good crystal quality and increased quantum confinement effect) with potential applications, such as in gas sensors , DSSCs, and Opto- devices. This study focuses on the properties of Metal(Al; Ag)- doped ZnO nanostructure prepared by electric current induced crystallization(EIC) process.
Both ZnO nanowire and metal film(Al; Ag) had combined on SiO2 as the wires/ films structure, and the metal film was a conductive channel to perform the electrical induced crystallization (EIC). Under an electrical current, direct current (DC) raised the temperature(~200 degrees Celsius) of film and improved the crystallization of nanostructure.
The effects of EIC not only induced metal atomic interface diffused mechanism, but also doped metal on the roots of ZnO nanowires to form double layers wire(ZnO/metal- ZnO). The metal doped concentration and distance of ZnO nanowire had increased with decreasing the electrical duration. Also, the electrical current induced temperature was ~200 degrees Celsius(solid-state doping process) and so could be applied to low temperature nanostructures device.
[1] Zhu, H., Huepkes, J., Bunte, E., Owen, J., Huang, S. M. , “Novel etching method on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells”, Solar Energy Materials and Solar Cells., Vol.95(2011) , pp. 964-968.
[2] Muller J, Rech B, Springer J, Vanecek M, “TCO and light trapping in silicon thin film solar cells”, Solar Energy , Vol.77(2004) , pp.917-930
[3] T. Minanmi, “Transparent Conducting Oxide Semiconductors for Transparent Electrodes”, Semicond. Sci. Technol., Vol.20 (2005), pp. 35-44.
[4] Claus Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt, “65 years of ZnO research – old and very recent results”, Phys. Status Solidi B 247, Vol. 6(2010), pp.1424–1447.
[5] B.V. Mistry, P. Bhatt, K.H. Bhavsar, S.J. Trivedi, U.N. Trivedi , U.S. Joshi, “Growth and properties of transparent p-NiO/n-ITO (In2O3:Sn) p–n junction thin film diode”, Thin Solid Films,Vol. 519(2011) , pp.3840-3843.
[6] Jaejin Song, Sangwoo Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”,J. Phys. Chem. C, Vol. 111(2007) , pp. 596-600.
[7] P. X. Gao, Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process”, J. Phys. Chem. B, Vol.108(2004) , pp.7534-7537.
[8] Kim H, Horwitz JS, Kim WH, Makinen AJ, Kafafi ZH, Chrisey DB, “Doped ZnO thin films as anode materials for organic light-emitting diodes”, Thin Solid Films,Vol.420(2002),pp. 539-543.
[9] Yang YM, Lai H, Tao CY, Yang H, “Correlation of luminescent properties of ZnO and Eu doped ZnO nanorods”, Vol.21(2010) , pp.173-178.
[10] Fei-Yi Hung, Jiunn-Der Liao, Truan-Sheng Lui,Li-Hui Chen, “Electrical current induced mechanism in microstructure and nano-indention of Al–Zn–Mg–Cu (AZMC) Al alloy thin film”, Current Applied Physics, (2011) , pp. 1-5.
[11] T. J. Boyle, S. D. Bunge, N. L. Andrews, L. E. Matzen, K. Sieg, and M. A. Rodriguez, T. J. Headley, “Precursor Structural Influences on the Final ZnO Nanoparticle Morphology from a Novel Family of Structurally Characterized Zinc Alkoxy Alkyl Precursors”, Chem. Mater., Vol.16 (2004) , pp. 3279-3288.
[12] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, “Control of Preferred Orientation for ZnOx Films: Control of Self-texture”, J. Cryst. Growth, Vol.130 (1993) , pp. 269-279.
[13] M. Izaki, and T. Omi, “Characterization of Transparent Zinc Oxide Films Prepared by Elecfrochemical Reaction”, J. Electrochem. Soc., Vol.144 (1997) , pp. 1949-1952.
[14] D. C. Agarwal, R. S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S. A. Khan, D. K. Avasthi, J. C. Pivin, M. Kumar, J. Ghatak, and P. V. Satyam, “Synthesis and Characterization of ZnO Thin Film Grown by Electron Beam Evaporation”, J. Appl. Phys., Vol.99 (2006) , pp. 123105-1-123105-6.
[15] Y. F. Mei, G. G. Siu, R. K. Y. Fu, P. K. Chu, Z. M. Li, and Z. K. Tang, “Room-temperature Electrosynthesized ZnO Thin Film with Strong (002) Orientation and Its Optical Properties”, Appl. Surf. Sci., Vol.252 (2006) , pp. 2973-2977.
[16] A. P. Roth, J. B. Webb, and D. F. Williams, “Absorption Edge Shift in ZnO Thin Films at High Carrier Densities”, Solid State Commun., Vol.39 (1981) , pp. 1269-1271.
[17] N. Kavasoglu, and A. S. Kavasoglu, “Metal–semiconductor Transition in Undoped ZnO Films Deposited by Spray Pyrolysis”, Physica B, Vol.403 (2008) , pp. 2807-2810.
[18] C. Gumus, O. M. Ozkendir, H. Kavak, and Y. Ufuktepe, “Structural and Optical Properties of Zinc Oxide Thin Films Prepared by Spray Pyrolysis Method”, J. Optoelectron. Adv. M., Vol.8 (2006) , pp. 299-303.
[19] Zhu, Y. F., Zhou, G. H., Ding, H. Y., Liu, A. H., Lin, Y. B., Li, N. L. , “Synthesis of highly-ordered hierarchical ZnO nanostructures and their application in dye-sensitized solar cells”, CRYSTAL RESEARCH AND TECHNOLOGY, Vol.45 (2010) , pp.1075-1078.
[20]J. Hong, H. Paik, H. Hwang, S. Lee, A. J. deMello, K. No, “The effect of growth temperature on physical properties of heavily doped ZnO:Al films”,Phys. Status. Solidi A,Vol.206 (2009), pp.697-703.
[21] D. R. Sahu, J. L. Huang, “ High Quality Transparent Conductive ZnO/Ag/ZnO Multilayer Films Deposited at Room Temperature”,Thin Solid Films , Vol.515(2006) , pp.876-879.
[22]F. Al-Kuhaili, M. A. Al-Maghrabi, S. M. A. Durrani, I. A. Bakhtiari, “Investigation of ZnO/Al/ZnO multilayers as transparent conducting coatings”,J. Phys. D: Appl. Phys. ,Vol.41(2008) , pp.215302 .
[23] H. J. Song, Y. H. Kim, J. I. Han, “ Development of Ultrafine Indium Tin Oxide (ITO) Nanoparticle for Ink-Jet Printing by Low-Temperature Synthetic Method”, IEEE Trans. Nanotech. Vol.7(2008) , pp.172-176 .
[24] D. A. Hughes, M. E. Kassner, M. G. Stout, J. S. Vetrano, “Metal Forming at the Center of Excellence for the Synthesis and Processing of Advanced Materials”, JOM, Vol.50(1998), no.6, pp. 16-21.
[25] M. Kawamura, D. Fukuda, Y. Inami, Y. Abe, K. Sasaki, “Thermally stable very thin Ag films for electrodes”, J. Vac. Sci. Technol. A, Vol. 27(2009), no. 4, pp. 975-978 .
[26] S. M. Rossnagel, “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1989 pp. 341-343.
[27] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, Westwood, New Jersey, 1998 pp.330-333.
[28] M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film hetero junction light-emitting diodes”,Applied Physics Letters, Vol.88(2006) , pp.202105.
[29]J. Y. Chen, C. J. Pan, F. C. Tsao, C. H. Kuo, G. C. Chi, B. J. Pong, C. Y. Chang, D. P. Norton, S. J. Pearton, “Characterization of ZnO nanowires grown on Si (100) with and without Au catalyst”, Vacuum, Vol.83(2009), pp.1076-1079.
[30] X. Wang, J. Song, Jin Liu, Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science, Vol. 316(2007) , 5821, pp. 102-105.
[31] M. H. Huang, , S. F. Mao, H. Yan, H. Wu, Y. Kind, H. Weber, E. Russo, R. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers ”,Science 2001, 292, pp.1897-1899.
[32] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Advanced Materials,Vol.15(2003), pp.464-466.
[33] R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Applied Physics Letters, Vol.88(2006), 023111.
[34] Sining Yun, Juneyoung Lee, Jooyoung Chung, Sangwoo Lim, “Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping”,Journal of Physics and Chemistry of Solids,Vol.71(2010), pp. 1724-1731
[35] S. N. Bai, H. H. Tsai, T. Y. Tseng, “Structural and optical properties of Al-doped ZnO nanowires synthesized by hydrothermal method”, Thin Solid Films,Vol.516(2007), pp.155-158.
[36] H. J. Park, J. H. Park, J. I. Choi, J. Y. Lee, J. H. Chae, and D. Kim, “Fabrication of Transparent Conductive Films with a Sandwich Structure Composed of ITO/Cu/ITO”, Vacuum, Vol.83 (2009) , pp. 448-450.
[37] M. Eskandari, V. Ahmadi, S.H. Ahmadi, “Growth of Al-doped ZnO nanorod arrays on the substrate at low temperature”, Physica E Vol.42(2010) , pp.1683-1686
[38] T. T. Loan, N. N. Long, L. H. Ha, J. Phys. D, “Photoluminescence properties of Co-doped ZnO nanorods synthesized by hydrothermal method”, Appl. Phys. ,Vol.42(2009), pp.065412.
[39] Y. S. Min, E. J. Bae, U. J. Kim, W. Parka, “Direct Growth of Single-walled Carbon Nanotubes on Conducting ZnO Films and Its Field Emission Properties”, Appl. Phys. Lett., Vol.89 (2006) pp. 113116-1-113116-3.
[40] S. Naga, M. Tamekawa, T. Terashita, H. Okada, H. Anada, H. Onnagawa, “Electrical properties of organic electroluminescent devices with aluminium alloy cathode ”, Synthetic Metals,Vol.91(1997),pp.129-130.
[41] H. Han, N. D. Theodore, and T. L. Alford, “Improved Conductivity and Mechanism of Carrier Transport in Zinc Oxide with Embedded Silver Layer”, J. Appl. Phys., Vol.103 (2008) , pp. 013708-1-013708-8.
[42] F. M. Smits, "Measurement of Sheet Resisitivities with the Four-Point Probe", Bell System Technical Journal, Vol.37 (1958) pp. 711-718.
[43] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman Scattering and Biophysics”, J. Phys.: Condens. Matter, Vol.14 (2002) , pp. 597-624.
[44] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) structures” ,Solid-State Electronics, Vol. 14(1971), pp. 1209.
[45] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films” , Thin Solid Films, Vol. 280(1996) , pp. 20 - 25