| 研究生: |
程力可 Cheng, Li-Ke |
|---|---|
| 論文名稱: |
UHPC 3D列印力學行為之有限元素分析:撓曲、界面、以及異向性行為 Finite Element Analysis of 3D-Printed UHPC: Flexural, Interfacial, and Anisotropic behavior |
| 指導教授: |
洪崇展
Hung, Chung-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 203 |
| 中文關鍵詞: | 超高性能混凝土 、3D 列印 、有限元 、層間屬性 、本構模型 |
| 外文關鍵詞: | UHPC, 3DCP, Finite element, Interfacial property, concrete constitutive |
| 相關次數: | 點閱:80 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文为 3DCP(3D 混凝土打印)和 UHPC(超高性能混凝土)的研究,旨在在 相關文獻的支持下,为日常測試實踐與該領域的最新進展之間建立聯繫。最初也是 關鍵的一步是獲得本構模型,這是理解力學行為和確定研究方向的基礎。利用 FEM (有限元法)軟件中的 NC(普通混凝土)模型可以模擬各種結構測試,例如壓 縮、拉伸、彎曲、劈裂和扭轉。通過分析這些行為,研究人員成功地確定了一種本 構模型,可以準確地複制在 UHPC 中觀察到的力學現象。
3DCP 和 3D UHPC 已在各個行業得到廣泛應用,包括建築、施工、土木工程 和基礎設施開發。該技術能夠創建各種結構,從微型裝飾節點到大型建築構件,如 牆壁、地板,甚至整個房屋。 3DCP 涉及利用大型 3D 打印機增材製造用於建築結 構的混凝土基材料。該過程通常從在計算機上創建虛擬結構開始,然後將其分割成 所需的結構或組件。隨後,施工現場安裝了一台 3D 打印機來增材濕混凝土層,逐 漸形成最終產品。
This paper presents the investigation on 3DCP (3D Concrete Printing) and UHPC (Ultra-high Performance Concrete), aiming to establish a connection between everyday testing practices and recent advancements in the field, as supported by relevant literature. The initial and crucial step involves obtaining the constitutive model, which serves as the foundation for understanding mechanical behavior and determining the direction of research. The utilization of NC (Normal Concrete) models in FEM (Finite Element Method) software enables the simulation of various structural tests, such as compression, tension, bending, splitting, and torsion. Through analyzing these behaviors, researchers have successfully identified a constitutive model that accurately replicates the mechanical phenomena observed in UHPC.
3DCP and 3D UHPC have found widespread application across various industries, including architecture, construction, civil engineering, and infrastructure development. The technology enables the creation of a wide range of structures, from micro decorative nodes to great building components such as boards, walls, floors, and even entire houses. 3DCP involves the utilization of large-scale 3D printers to additively manufacture concrete-based materials for building structures. The process typically starts with creation of virtual structures on a computer, which is then segmented into the desired structure or component. Subsequently, a 3D printer is installed at the construction site to deposit layers of wet concrete, gradually building up the final product.
Bartlett, M. D., Case, S. W., Kinloch, A. J., & Dillard, D. A. (2023). Peel tests for quantifying adhesion and toughness: A review. Progress in Materials Science, 101086.
Chen, G. M., Chen, J. F., & Teng, J. G. (2012). On the finite element modelling of RC beams shear-strengthened with FRP. Construction and Building Materials, 32, 13-26. doi:10.1016/j.conbuildmat.2010.11.101
Chen, Y., Jansen, K., Zhang, H., Rodriguez, C. R., Gan, Y., Çopuroğlu, O., & Schlangen, E. (2020). Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study. Construction and Building Materials, 262, 120094.
Coleman, B. D., & Gurtin, M. E. (1967). Thermodynamics with internal state variables. The journal of chemical physics, 47(2), 597-613.
Dai, Y., Li, Y., Xu, X., Zhu, Q., Yin, Y., Ge, S., . . . Pan, L. (2020). Characterization of tensile failure behaviour of magnesia refractory materials by a modified dog-bone shape direct tensile method and splitting tests. Ceramics International, 46(5), 6517-6525.
Ding, T., Qin, F., Xiao, J., Chen, X., & Zuo, Z. (2022). Experimental study on the bond behaviour between steel bars and 3D printed concrete. Journal of Building Engineering, 49, 104105.
Grassl, P. (2004). Modelling of dilation of concrete and its effect in triaxial compression. Finite elements in analysis and design, 40(9-10), 1021-1033.
Ju, J. (1989). On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. International Journal of Solids and Structures, 25(7), 803-833.
Kotsovos, M. D., & Newman, J. B. (1980). Mathematical description of deformational behavior of concrete under generalized stress beyond ultimate strength. Paper presented at the Journal Proceedings.
Lai, Y., Gao, Z., Zhang, S., & Chang, X. (2010). Stress-strain relationships and nonlinear Mohr strength criteria of frozen sandy clay. Soils and Foundations, 50(1), 45-53.
Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. Journal of engineering mechanics, 124(8), 892-900.
Lemaitre, J. (1985). A continuous damage mechanics model for ductile fracture.
Liu, C., Zhang, R., Liu, H., He, C., Wang, Y., Wu, Y., . . . Zuo, F. (2022). Analysis of the mechanical performance and damage mechanism for 3D printed concrete based on pore structure. Construction and Building Materials, 314, 125572.
Liu, H., Ding, T., Xiao, J., & Mechtcherine, V. (2022). Buildability prediction of 3D–printed concrete at early-ages: A numerical study with Drucker–Prager model. Additive Manufacturing, 55, 102821.
Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299-326.
Mazars, J. (1986). A model of a unilateral elastic damageable material and its application to concrete. Fracture toughness and fracture energy of concrete, 61-71.
Ortiz, M. (1985). A constitutive theory for the inelastic behavior of concrete. Mechanics of materials, 4(1), 67-93.
Pardis, N., Ebrahimi, R., & Kim, H. S. (2017). Equivalent strain at large shear deformation: Theoretical, numerical and finite element analysis. Journal of Applied Research and Technology, 15(5), 442-448. doi:10.1016/j.jart.2017.05.002
Simo, J. C., & Hughes, T. J. (2006). Computational inelasticity (Vol. 7): Springer Science & Business Media.
Tam, K.-M. M. (2015). Principal stress line computation for discrete topology design. Massachusetts Institute of Technology,
Tam, K.-M. M., & Mueller, C. T. (2017). Additive manufacturing along principal stress lines. 3D Printing and Additive Manufacturing, 4(2), 63-81.
van den Heever, M., du Plessis, A., Bester, F., Kruger, J., & van Zijl, G. (2022). A mechanistic evaluation relating microstructural morphology to a modified Mohr-Griffith compression-shear constitutive model for 3D printed concrete. Construction and Building Materials, 325, 126743.
Vermeer, P. A., & De Borst, R. (1984). Non-associated plasticity for soils, concrete and rock. HERON, 29 (3), 1984.
Wolfs, R., Bos, F., & Salet, T. (2018). Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cement and Concrete Research, 106, 103-116.
Wu, J., & Li, J. (2004). A new energy-based elastoplastic damage model for concrete. Paper presented at the Proceedings of the XXI International Conference of Theoretical and Applied Mechanics (ICTAM), Warsaw, Poland.
Wu, J. Y., Li, J., & Faria, R. (2006). An energy release rate-based plastic-damage model for concrete. International Journal of Solids and Structures, 43(3-4), 583-612. doi:10.1016/j.ijsolstr.2005.05.038
Xiao, J., Liu, H., & Ding, T. (2021). Finite element analysis on the anisotropic behavior of 3D printed concrete under compression and flexure. Additive Manufacturing, 39. doi:10.1016/j.addma.2020.101712
Xu, Y., Yuan, Q., Li, Z., Shi, C., Wu, Q., & Huang, Y. (2021). Correlation of interlayer properties and rheological behaviors of 3DCP with various printing time intervals. Additive Manufacturing, 47, 102327.
Yang, J., Xia, J., Zhang, Z., Zou, Y., Wang, Z., & Zhou, J. (2022). Experimental and numerical investigations on the mechanical behavior of reinforced concrete arches strengthened with UHPC subjected to asymmetric load. Paper presented at the Structures.
Yang, S., Lan, T., Sun, Z., Xu, M., Wang, M., & Feng, Y. (2022). A predictive model to determine tensile strength and fracture toughness of 3D printed fiber reinforced concrete loaded in different directions. Theoretical and Applied Fracture Mechanics, 119, 103309.
Yao, H., Xie, Z., Li, Z., Huang, C., Yuan, Q., & Zheng, X. (2022). The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite. Construction and Building Materials, 316, 125809.
Yu, T., Teng, J. G., Wong, Y. L., & Dong, S. L. (2010). Finite element modeling of confined concrete-II: Plastic-damage model. Engineering Structures, 32(3), 680-691. doi:10.1016/j.engstruct.2009.11.013
Li, J., Wu, J.Y., 2004. Energy-based CDM model for nonlinear analysis of confined concrete structures. In: International Symposium on Confined Concrete (ISCC), June 12–14, Changsha, China.
Lubliner, J., Oliver, S., On˜ ate, E., 1989. A plastic-damage model for concrete. International Journal of Solids and Structures 25 (2),299–326
Kupfer, H., Hilsdorf, H.K., Rusch, H., 1969. Behaviour of concrete under biaxial stress. Proc. ACI 66, 656–666..
张田,李晓琴,2020.valuation and Application of Typical Material Models Used in Fe Modelling under Monotonic and Cyclic Loading Conditions. 10.27200/d.cnki.gkmlu.2020.002216