簡易檢索 / 詳目顯示

研究生: 詹淳惠
Chan, Chun-Hui
論文名稱: 探討左腦傷與右腦傷亞急性中風個案在雙手協調表現之差異
Examining Hemispheric-Specific Differences in Bimanual Coordination in Individuals with Subacute Stroke
指導教授: 古佳苓
Koh, Chia-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 職能治療學系
Department of Occupational Therapy
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 76
中文關鍵詞: 雙手協調動作控制大腦特異化亞急性中風
外文關鍵詞: bimanual coordination, motor control, hemispheric specialization, subacute stroke
相關次數: 點閱:33下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:雙手協調對於日常生活功能表現十分重要,舉凡吃飯、洗澡、開車……等等,皆需要良好的雙手協調能力,使人們能夠獨立完成日常生活任務。雙手協調可根據時間和空間特性區分為:對稱性以及非對稱性任務,以及獨立目標與共同目標任務。然而,中風個案經常因為兩點辨識覺、力量控制,或是執行功能受損,導致雙手協調表現受損。已知兩點辨識覺與力量控制受損會導致感覺動作整合能力受損,執行功能受損則可能會影響動作計畫能力,皆會使得動作控制表現變差。針對中風個案過去已經有研究發現,左腦傷和右腦傷的單手動作控制表現,呈現大腦特異化現象。然而,在雙手協調任務上,考量到不同類型的雙手任務,具備不同時間空間特性,因此仍需要更多文獻探討,不同類型的雙手協調任務是否亦具有大腦特異化。此外,在中風亞急性期,雙手協調缺損已出現,且此階段為動作復元成效最顯著的階段。若能夠了解亞急性期左腦傷與右腦傷個案在雙手協調表現,有助於治療師預測其預後,並且設定更具任務性的介入計畫。
    研究目的:本研究目的為探討左腦傷與右腦傷亞急性中風個案在雙手協調表現之差異,欲探討 (1) 在對稱型雙手任務中,患側手的軌跡控制是否具半球特異性;(2) 在非對稱型任務中,患側手的軌跡控制是否具半球特異性;(3) 在四項雙手任務中,患側手的定位點控制是否具半球特異性。
    研究方法:本研究將納入26位中風個案 (左腦傷與右腦傷各26位)。所有受試者須為第一次中風,且處於亞急性期,動作表現為輕微受損。受試者的主要評估項目為雙手積木測驗 (Bimanual Block Test),兩點辨識覺測驗 (2-point discrimination test)、捏力測驗 (Hydraulic Jamar Pinch Guage),以及顏色路徑測驗 (Color Trail Test 1, 2) 也會評估以作為共變項因子探討。雙手積木測驗是根據過去文獻而設計,總共包含四種任務類型:對稱獨立目標(symmetric independent)、對稱共同目標(symmetric common)、非對稱獨立目標(asymmetric independent)、非對稱共同目標(asymmetric common)。雙手協調任務將會使用開源軟體Kinovea紀錄並獲得運動學資訊,並進一步使用MATLAB分析,得到三項運動學相關參數:定位點向量差、距離/位移比,以及任務完成時長。最後,ANCOVA用於比較左腦傷、右腦傷兩組在四項雙手任務的表現,並將指側捏力納入為共變項。
    研究結果:本研究結果有三個主要研究結果。首先,研究發現患側手的定位點向量差,在對稱獨立目標任務中,左腦傷組的向量差顯著大於右腦傷,表示左腦傷在此任務對於定位點的控制較弱。第二,研究發現患側手的距離/位移比,在非對稱型共同目標任務中,右腦傷組的筆直顯著大於左腦傷,表示右腦傷在此任務的軌跡控制較弱;而在相同任務中,非患側手的比值則是左腦傷顯著大於右腦傷。在任務完成時常這項參數中,沒有發現顯著組間差異。
    討論與總結:本研究發現,在執行雙手任務時,左腦傷患者在空間控制相關的指標,例如:position error 和 path ratio表現普遍較差,但在任務完成時間,左右腦傷患者之間並沒有明顯差異。這可能代表左腦損傷後,患者在雙手協調時的困難,可能主要來自於空間上的控制不穩定,而不是動作時序的落差;也就是左腦傷的個案的雙手動作可能能同步完成,但無法準確到達正確的空間位置。因此,在未來的臨床訓練上,建議可針對左腦傷患者安排更多提升動作準確性與空間對應能力的練習,例如目標導向的抓取練習、雙手操作定位訓練等,以改善其在日常生活中雙手協調的表現。

    Introduction: Bimanual coordination plays a crucial role in activities of daily living (ADL) and, based on their spatiotemporal characteristics, can be categorized into symmetric and asymmetric tasks. Stroke survivors frequently experience deficits in bimanual coordination owing to impaired tactile discrimination, force control, or executive function, which subsequently impairs sensorimotor integration and motor control. Although hemispheric specialization in unimanual motor control has been observed in patients with stroke and left and right hemisphere damage (LHD and RHD, respectively), there is limited research on the spatiotemporal aspects of bimanual coordination and hemispheric differences.
    Purpose: This study aimed to investigate differences in bimanual coordination performance between patients with LHD and RHD after subacute stroke. Specifically, the following three objectives were addressed: (1) To examine whether there are hemispheric differences in path ratio performance between the LHD and RHD groups during symmetric tasks; (2) To examine whether there are hemispheric differences in path ratio during asymmetric tasks; and (3) To examine whether there are hemispheric differences in absolute position error (APE) across the four types of bimanual tasks.
    Method: In total, 26 first-time subacute stroke patients with mild motor impairment were enrolled. They were evenly divided between LHD and RHD. Bimanual coordination performance was assessed using the Bimanual Block Test (BiBT), with three kinematic parameters: APE, path ratio, and movement time from the four bimanual tasks, symmetric independent (SI), symmetric common (SC), asymmetric independent (AI), and asymmetric common (AC). To account for confounding factors, tactile discrimination was evaluated through the 2-point discrimination test (2PD), pinch strength with the hydraulic Jamar Pinch Gauge (HJPG), and executive function was assessed by Color Trail Test 1 and 2 (CTT-1, CTT-2). The bimanual coordination performance was recorded by the open software “Kinovea” and further analyzed through MATLAB. ANCOVA was used to compare performance between LHD and RHD group, with pinch strength as the covariate.
    Results: The ANCOVA revealed three significant between-group differences. First, the APE of the affected hand was significantly greater in the LHD group than in the RHD group during the SI task. Second, a significant between-group difference in path ratio of the affected hand was observed during the AC task, with the RHD group exhibiting a higher path ratio than the LHD group. Third, for the unaffected hand in the AC task, the LHD group showed a significantly higher path ratio than the RHD group. No significant between-group differences were found in movement time across tasks.
    Discussion and Conclusion: Those with LHD demonstrated worse bimanual coordination with spatial characteristics, such as APE and path ratio, both in the affected and unaffected hand. This result revealed that in LHD, when performing bimanual tasks, unsuccessful bimanual coordination may result from the unstable control in the space between hands. Thus, future interventions for LHD should involve more exercises regarding movement accuracy in space, such as goal-oriented reach-to-grasp and bimanual positioning.

    中文摘要 I Abstract III List of Figures and Tables VIII Chapter 1 General Introduction 1 Chapter 2 Literature Review 6 2.1 Bimanual Coordination in Stroke 6 2.1.1 Functional Role of Bimanual Coordination in Daily Life 6 2.1.2 Impact of Stroke on Bimanual Coordination: Prevalence and Functional Limitations 7 2.2 Characteristics and Classifications of Bimanual Coordination 8 2.2.1 Characteristics of Bimanual Coordination 8 2.2.2 Classification of Bimanual Coordination Tasks 10 2.3 Hemispheric Specialization in Motor Control and Bimanual Coordination 12 2.3.1 Hemisphere-specific Phenomena in Motor Control 12 2.3.2 Key Factors Influencing Motor Control: 18 Tactile Discrimination, Force Generation, and Executive Function 18 2.3.3 Hemisphere-specific Processing of Sensorimotor Integration 20 2.3.4 Interhemispheric Interactions in Bimanual Coordination 22 2.3.5 Limitations and Conflicting Evidence on Hemispheric Specialization in Bimanual Coordination 23 2.4 Research Gap 25 2.5 Purpose and Hypothesis 26 2.6 Expected Contributions 27 Chapter 3 Method 28 3.1 Participants 28 3.2 Measurements 29 3.2.1. Bimanual Block Test (BiBT) 29 3.2.2. Hydraulic Jamar Pinch Gauge 33 3.2.3. 2-Point Discrimination Test (2PD) 34 3.2.4 Color Trial Test 1, 2 (CTT-1, CTT-2) 35 3.3 Procedures 36 3.4 Statistical Analysis 37 Chapter 4. Results 38 4.1 Demographic Data and Clinical Characteristics of Participants 38 4.2 Covariate Selection 40 4.3 Group Differences in ANCOVA Analysis 42 4.3.1 Group Differences in Absolute Position Error 44 4.3.2 Group Differences in Path Ratio 45 4.3.3 Group Differences in Movement Time 46 4.4 Summary of Stroke Findings 47 Chapter 5: Discussion 48 5.1 Impaired Spatial Coordination in LHD During SI task 48 5.2 Hemispheric Differences in Trajectory Control During AC Task 50 5.3 Similar Movement Time With Delays in LHD’s Affected Hand 52 5.4 Theoretical and Clinical Implications 53 5.5 Limitations and Future Directions 55 5.6 Conclusion 57 References 58

    Anderson, C., Rajamani, K., Pardo, V., & Adamo, D. E. (2018). Asymmetries in force matching are related to side of stroke in right-handed individuals. Neurosci Lett, 683, 144-149. https://doi.org/10.1016/j.neulet.2018.07.034
    Andres, F. G., Mima T Fau - Schulman, A. E., Schulman Ae Fau - Dichgans, J., Dichgans J Fau - Hallett, M., Hallett M Fau - Gerloff, C., & Gerloff, C. (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. (0006-8950 (Print)).
    Bagesteiro, L. B., & Sainburg, R. L. (2002). Handedness: Dominant Arm Advantages in Control of Limb Dynamics. Journal of Neurophysiology, 88(5), 2408-2421. https://doi.org/10.1152/jn.00901.2001
    Bernhardt, J., Hayward, K. S., Kwakkel, G., Ward, N. S., Wolf, S. L., Borschmann, K., Krakauer, J. W., Boyd, L. A., Carmichael, S. T., Corbett, D., & Cramer, S. C. (2017). Agreed Definitions and a Shared Vision for New Standards in Stroke Recovery Research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabil Neural Repair, 31(9), 793-799. https://doi.org/10.1177/1545968317732668
    Bleyenheuft, Y., & Thonnard, J. L. (2011). Tactile spatial resolution in unilateral brain lesions and its correlation with digital dexterity. J Rehabil Med, 43(3), 251-256. https://doi.org/10.2340/16501977-0651
    Bogaerts, H., & Swinnen, S. P. (2001). Spatial interactions during bimanual coordination patterns: the effect of directional compatibility. (1087-1640 (Print)).
    Boll, T. J. (1974). Right and left cerebral hemisphere damage and tactile perception: performance of the ipsilateral and contralateral sides of the body. (0028-3932 (Print)).
    Carey, L. M., & Matyas, T. A. (2011). Frequency of discriminative sensory loss in the hand after stroke in a rehabilitation setting. J Rehabil Med, 43(3), 257-263. https://doi.org/10.2340/16501977-0662
    Carey, L. M., Matyas, T. A., & Baum, C. (2018). Effects of Somatosensory Impairment on Participation After Stroke. Am J Occup Ther, 72(3), 7203205100p7203205101-7203205100p7203205110. https://doi.org/10.5014/ajot.2018.025114
    Cauraugh, J. H., & Kang, N. (2021). Bimanual Movements and Chronic Stroke Rehabilitation: Looking Back and Looking Forward. Applied Sciences, 11(22). https://doi.org/10.3390/app112210858
    Coghill, R. C., Gilron, I., & Iadarola, M. J. (2001). Hemispheric Lateralization of Somatosensory Processing. Journal of Neurophysiology, 85(6), 2602-2612. https://doi.org/10.1152/jn.2001.85.6.2602
    Cormier, J.-M., & Tremblay, F. (2013). Asymmetry in corticomotor facilitation revealed in right-handers in the context of haptic discrimination. Laterality: Asymmetries of Body, Brain and Cognition, 18(3), 365-383. https://doi.org/10.1080/1357650x.2012.701631
    Dellon, A. L., Mackinnon, S. E., & Crosby, P. M. (1987). Reliability of two-point discrimination measurements. J Hand Surg Am, 12(5 Pt 1), 693-696. https://doi.org/10.1016/s0363-5023(87)80049-7
    Dispa, D., Thonnard, J. L., & Bleyenheuft, Y. (2014). Impaired predictive and reactive control of precision grip in chronic stroke patients. Int J Rehabil Res, 37(2), 130-137. https://doi.org/10.1097/MRR.0000000000000045
    Doron, K. W., Bassett, D. S., & Gazzaniga, M. S. (2012). Dynamic network structure of interhemispheric coordination. Proc Natl Acad Sci U S A, 109(46), 18661-18668. https://doi.org/10.1073/pnas.1216402109
    Edwards, L. L., King, E. M., Buetefisch, C. M., & Borich, M. R. (2019). Putting the "Sensory" Into Sensorimotor Control: The Role of Sensorimotor Integration in Goal-Directed Hand Movements After Stroke. Front Integr Neurosci, 13, 16. https://doi.org/10.3389/fnint.2019.00016
    Ehrsson, H. H., Fagergren A Fau - Jonsson, T., Jonsson T Fau - Westling, G., Westling G Fau - Johansson, R. S., Johansson Rs Fau - Forssberg, H., & Forssberg, H. (2000). Cortical activity in precision- versus power-grip tasks: an fMRI study. (0022-3077 (Print)).
    Ekstrand, E., Lexell, J., & Brogardh, C. (2016). Grip strength is a representative measure of muscle weakness in the upper extremity after stroke. Top Stroke Rehabil, 23(6), 400-405. https://doi.org/10.1080/10749357.2016.1168591
    Fercho, K. A., Scholl, J. L., Kc, B., Bosch, T. J., & Baugh, L. A. (2023). Sensorimotor control of object manipulation following middle cerebral artery (MCA) stroke. Neuropsychologia, 182, 108525. https://doi.org/10.1016/j.neuropsychologia.2023.108525
    Fontenot Dj Fau - Benton, A. L., & Benton, A. L. (1971). Tactile perception of direction in relation to hemispheric locus of lesion. (0028-3932 (Print)).
    Gerloff, C., & Andres, F. G. (2002). Bimanual coordination and interhemispheric interaction. (0001-6918 (Print)).
    Gotts, S. J., Jo, H. J., Wallace, G. L., Saad, Z. S., Cox, R. W., & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci U S A, 110(36), E3435-3444. https://doi.org/10.1073/pnas.1302581110
    Haaland, K. Y., Elsinger Cl Fau - Mayer, A. R., Mayer Ar Fau - Durgerian, S., Durgerian S Fau - Rao, S. M., & Rao, S. M. (2004). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. (0898-929X (Print)).
    Harada, T., Saito, D. N., Kashikura, K., Sato, T., Yonekura, Y., Honda, M., & Sadato, N. (2004). Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study. J Neurosci, 24(34), 7524-7530. https://doi.org/10.1523/JNEUROSCI.1395-04.2004
    Hatem, S. M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., & Bleyenheuft, Y. (2016). Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci, 10, 442. https://doi.org/10.3389/fnhum.2016.00442
    Hmaied Assadi, S., Barel, H., Dudkiewicz, I., Gross-Nevo, R. F., & Rand, D. (2022). Less-Affected Hand Function Is Associated With Independence in Daily Living: A Longitudinal Study Poststroke. Stroke, 53(3), 939-946. https://doi.org/10.1161/STROKEAHA.121.034478
    Hmaied Assadi, S., Feige Gross-Nevo, R., Dudkiewicz, I., Barel, H., & Rand, D. (2020). Improvement of the Upper Extremity at the Subacute Stage Poststroke: Does Hand Dominance Play a Role? Neurorehabil Neural Repair, 34(11), 1030-1037. https://doi.org/10.1177/1545968320962502
    Johansson, R. S., Theorin, A., Westling, G., Andersson, M., Ohki, Y., & Nyberg, L. (2006). How a lateralized brain supports symmetrical bimanual tasks. PLoS Biol, 4(6), e158. https://doi.org/10.1371/journal.pbio.0040158
    Johnson, T., Ridgeway, G., Luchmee, D., Jacob, J., & Kantak, S. (2022). Bimanual coordination during reach-to-grasp actions is sensitive to task goal with distinctions between left- and right-hemispheric stroke. Exp Brain Res, 240(9), 2359-2373. https://doi.org/10.1007/s00221-022-06419-2
    Kalbfleisch, M. L., & Gillmarten, C. (2013). Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness. Roeper Review, 35(4), 265-275. https://doi.org/10.1080/02783193.2013.829549
    Kang, N., & Cauraugh, J. H. (2014). Force control improvements in chronic stroke: bimanual coordination and motor synergy evidence after coupled bimanual movement training. Exp Brain Res, 232(2), 503-513. https://doi.org/10.1007/s00221-013-3758-z
    Kang, N., & Cauraugh, J. H. (2018). Right Hemisphere Contributions to Bilateral Force Control in Chronic Stroke: A Preliminary Report. J Stroke Cerebrovasc Dis, 27(11), 3218-3223. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.07.019
    Kantak, S., Jax, S., & Wittenberg, G. (2017). Bimanual coordination: A missing piece of arm rehabilitation after stroke. Restor Neurol Neurosci, 35(4), 347-364. https://doi.org/10.3233/RNN-170737
    Kantak, S., McGrath, R., & Zahedi, N. (2016). Goal conceptualization and symmetry of arm movements affect bimanual coordination in individuals after stroke. Neurosci Lett, 626, 86-93. https://doi.org/10.1016/j.neulet.2016.04.064
    Kantak, S. S., Zahedi, N., & McGrath, R. L. (2016). Task-Dependent Bimanual Coordination After Stroke: Relationship With Sensorimotor Impairments. Arch Phys Med Rehabil, 97(5), 798-806. https://doi.org/10.1016/j.apmr.2016.01.020
    Karabanov, A. N., Chillemi, G., Madsen, K. H., & Siebner, H. R. (2023). Dynamic involvement of premotor and supplementary motor areas in bimanual pinch force control. Neuroimage, 276, 120203. https://doi.org/10.1016/j.neuroimage.2023.120203
    Kim, R. K., & Kang, N. (2020). Bimanual Coordination Functions between Paretic and Nonparetic Arms: A Systematic Review and Meta-analysis. J Stroke Cerebrovasc Dis, 29(2), 104544. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104544
    Kim, Y. W. (2022). Update on Stroke Rehabilitation in Motor Impairment. Brain Neurorehabil, 15(2), e12. https://doi.org/10.12786/bn.2022.15.e12
    Lai, C. H., Sung, W. H., Chiang, S. L., Lu, L. H., Lin, C. H., Tung, Y. C., & Lin, C. H. (2019). Bimanual coordination deficits in hands following stroke and their relationship with motor and functional performance. J Neuroeng Rehabil, 16(1), 101. https://doi.org/10.1186/s12984-019-0570-4
    Lamp, G., Goodin, P., Palmer, S., Low, E., Barutchu, A., & Carey, L. M. (2018). Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies. Front Neurol, 9, 1129. https://doi.org/10.3389/fneur.2018.01129
    Lephart, B. L. R. S. M. (2001). The sensorimotor system, part II-the role of proprioception in motor control and functional joint stability.pdf>.
    Liao, W. A.-O. X., Whitall, J., Barton, J. E., & McCombe Waller, S. (2018). Neural motor control differs between bimanual common-goal vs. bimanual dual-goal tasks. (1432-1106 (Electronic)).
    Lindberg, P. G., AmirShemiraniha, N., Krewer, C., Maier, M. A., & Hermsdorfer, J. (2024). Increased dual-task interference during upper limb movements in stroke exceeding that found in aging - a systematic review and meta-analysis. Front Neurol, 15, 1375152. https://doi.org/10.3389/fneur.2024.1375152
    MacNeilage, P. F., Rogers Lj Fau - Vallortigara, G., & Vallortigara, G. (2009). Origins of the left & right brain. (0036-8733 (Print)).
    Maenza, C., Good, D. C., Winstein, C. J., Wagstaff, D. A., & Sainburg, R. L. (2020). Functional Deficits in the Less-Impaired Arm of Stroke Survivors Depend on Hemisphere of Damage and Extent of Paretic Arm Impairment. Neurorehabil Neural Repair, 34(1), 39-50. https://doi.org/10.1177/1545968319875951
    Mani, S., Mutha, P. K., Przybyla, A., Haaland, K. Y., Good, D. C., & Sainburg, R. L. (2013). Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms. Brain, 136(Pt 4), 1288-1303. https://doi.org/10.1093/brain/aws283
    Mathiowetz, V., Volland, G., Kashman, N., & Weber, K. . (1985). Adult norms for the Box and Block Test of manual dexterity. The American journal of occupational therapy : official publication of the American Occupational Therapy Association. https://doi.org/ https://doi.org/10.5014/ajot.39.6.386
    Mathiowetz, V., Weber, K., Volland, G., & Kashman, N. (1984). Reliability and validity of grip and pinch strength evaluations. J Hand Surg Am, 9(2), 222-226. https://doi.org/10.1016/s0363-5023(84)80146-x
    Meyer, S., De Bruyn, N., Krumlinde-Sundholm, L., Peeters, A., Feys, H., Thijs, V., & Verheyden, G. (2016). Associations Between Sensorimotor Impairments in the Upper Limb at 1 Week and 6 Months After Stroke. J Neurol Phys Ther, 40(3), 186-195. https://doi.org/10.1097/NPT.0000000000000138
    Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol, 55(3), 400-409. https://doi.org/10.1002/ana.10848
    Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2012). The effects of brain lateralization on motor control and adaptation. J Mot Behav, 44(6), 455-469. https://doi.org/10.1080/00222895.2012.747482
    Naik, S. K., Patten, C., Lodha, N., Coombes, S. A., & Cauraugh, J. H. (2011). Force control deficits in chronic stroke: grip formation and release phases. Exp Brain Res, 211(1), 1-15. https://doi.org/10.1007/s00221-011-2637-8
    Nishikawa, K., Biewener, A. A., Aerts, P., Ahn, A. N., Chiel, H. J., Daley, M. A., Daniel, T. L., Full, R. J., Hale, M. E., Hedrick, T. L., Lappin, A. K., Nichols, T. R., Quinn, R. D., Satterlie, R. A., & Szymik, B. (2007). Neuromechanics: an integrative approach for understanding motor control. Integr Comp Biol, 47(1), 16-54. https://doi.org/10.1093/icb/icm024
    Nowak, D. A., & Hermsdorfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord, 20(1), 11-25. https://doi.org/10.1002/mds.20299
    Pan, Z., & Van Gemmert, A. W. A. (2019). The control of amplitude and direction in a bimanual coordination task. Hum Mov Sci, 65. https://doi.org/10.1016/j.humov.2018.03.014
    Patel, P., Kaingade, S. R., Wilcox, A., & Lodha, N. (2020). Force control predicts fine motor dexterity in high-functioning stroke survivors. Neurosci Lett, 729, 135015. https://doi.org/10.1016/j.neulet.2020.135015
    Patwardhan, S., Gladhill, K. A., Joiner, W. M., Schofield, J. S., Lee, B. S., & Sikdar, S. (2023). Using principles of motor control to analyze performance of human machine interfaces. Sci Rep, 13(1), 13273. https://doi.org/10.1038/s41598-023-40446-5
    Pavlova, E. L., & Borg, J. (2018). Impact of Tactile Sensation on Dexterity: A Cross-Sectional Study of Patients With Impaired Hand Function After Stroke. J Mot Behav, 50(2), 134-143. https://doi.org/10.1080/00222895.2017.1306482
    Potts, C. A., & Kantak, S. S. (2023). Post-stroke deficits in the anticipatory control and bimanual coordination during naturalistic cooperative bimanual action. J Neuroeng Rehabil, 20(1), 153. https://doi.org/10.1186/s12984-023-01257-x
    Potts, C. A., Williamson, R. A., Jacob, J. D., Kantak, S. S., & Buxbaum, L. J. (2024). Reaching the cognitive-motor interface: effects of cognitive load on arm choice and motor performance after stroke. Exp Brain Res(1432-1106 (Electronic)). https://doi.org/10.1007/s00221-024-06939-z
    Rudisch, J., Frohlich, S., Pixa, N. H., Kutz, D. F., & Voelcker-Rehage, C. (2023). Bimanual coupling is associated with left frontocentral network activity in a task-specific way. Eur J Neurosci. https://doi.org/10.1111/ejn.16042
    Sainburg, R., Good, D., & Przybyla, A. (2013). Bilateral Synergy: A Framework for Post-Stroke Rehabilitation. LID - 1025 [pii].
    Sainburg, R. L. (2016). Laterality of Basic Motor Control Mechanisms. In Laterality in Sports (pp. 155-177). https://doi.org/10.1016/b978-0-12-801426-4.00008-0
    Schaefer, S. Y., Haaland, K. Y., & Sainburg, R. L. (2007). Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain, 130(Pt 8), 2146-2158. https://doi.org/10.1093/brain/awm145
    Schaefer, S. Y., Haaland, K. Y., & Sainburg, R. L. (2009). Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia, 47(13), 2953-2966. https://doi.org/10.1016/j.neuropsychologia.2009.06.025
    Schaffer, J. E., Maenza, C., Good, D. C., Przybyla, A., & Sainburg, R. L. (2020). Left hemisphere damage produces deficits in predictive control of bilateral coordination. Exp Brain Res, 238(12), 2733-2744. https://doi.org/10.1007/s00221-020-05928-2
    Schaffer, J. E., & Sainburg, R. L. (2021). Interlimb Responses to Perturbations of Bilateral Movements are Asymmetric. J Mot Behav, 53(2), 217-233. https://doi.org/10.1080/00222895.2020.1760196
    Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis, 5th ed. Human Kinetics.
    Schmidt, R. A., & Lee, T. D. (2013). Motor Learning and Performance: From Principles to Application. Human Kinetics, Incorporated. https://books.google.com.tw/books?id=pPB6DwAAQBAJ
    Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7(2), 160-166. https://doi.org/10.1038/nrn1849
    Shao, K., Wang, W., Guo, S. Z., Dong, F. M., Yang, Y. M., Zhao, Z. M., Jia, Y. L., & Wang, J. H. (2020). Assessing executive function following the early stage of mild Ischemic stroke with three brief screening tests. J Stroke Cerebrovasc Dis, 29(8), 104960. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104960
    Sunderland, A., Bowers Mp Fau - Sluman, S. M., Sluman Sm Fau - Wilcock, D. J., Wilcock Dj Fau - Ardron, M. E., & Ardron, M. E. (1999). Impaired dexterity of the ipsilateral hand after stroke and the relationship to cognitive deficit. (0039-2499 (Print)).
    Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci, 3(5), 348-359. https://doi.org/10.1038/nrn807
    Swinnen, S. P., Jardin, K., & Meulenbroek, R. (1996). Between-limb asynchronies during bimanual coordination: Effects of manual dominance and attentional cueing. Neuropsychologia, 34(12), 1203-1213. https://doi.org/https://doi.org/10.1016/0028-3932(96)00047-4
    Swinnen, S. P., & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci, 8(1), 18-25. https://doi.org/10.1016/j.tics.2003.10.017
    Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nat Neurosci, 5(11), 1226-1235. https://doi.org/10.1038/nn963
    Torre, K., Hammami, N., Metrot, J., van Dokkum, L., Coroian, F., Mottet, D., Amri, M., & Laffont, I. (2013). Somatosensory-related limitations for bimanual coordination after stroke. Neurorehabil Neural Repair, 27(6), 507-515. https://doi.org/10.1177/1545968313478483
    Varghese, R., Gordon, J., Sainburg, R. L., Winstein, C. J., & Schweighofer, N. (2023). Adaptive control is reversed between hands after left hemisphere stroke and lost following right hemisphere stroke. Proc Natl Acad Sci U S A, 120(6), e2212726120. https://doi.org/10.1073/pnas.2212726120
    Varghese, R., & Winstein, C. J. (2019). Relationship Between Motor Capacity of the Contralesional and Ipsilesional Hand Depends on the Side of Stroke in Chronic Stroke Survivors With Mild-to-Moderate Impairment. Front Neurol, 10, 1340. https://doi.org/10.3389/fneur.2019.01340
    Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). Spatial interference during bimanual coordination: differential brain networks associated with control of movement amplitude and direction. Hum Brain Mapp, 26(4), 286-300. https://doi.org/10.1002/hbm.20151
    Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., Deruyter, F., Eng, J. J., Fisher, B., Harvey, R. L., Lang, C. E., MacKay-Lyons, M., Ottenbacher, K. J., Pugh, S., Reeves, M. J., Richards, L. G., Stiers, W., Zorowitz, R. D., American Heart Association Stroke Council, C. o. C., . . . Outcomes, R. (2016). Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 47(6), e98-e169. https://doi.org/10.1161/STR.0000000000000098
    Woytowicz, E. J., Rietschel, J. C., Goodman, R. N., Conroy, S. S., Sorkin, J. D., Whitall, J., & McCombe Waller, S. (2017). Determining Levels of Upper Extremity Movement Impairment by Applying a Cluster Analysis to the Fugl-Meyer Assessment of the Upper Extremity in Chronic Stroke. Arch Phys Med Rehabil, 98(3), 456-462. https://doi.org/10.1016/j.apmr.2016.06.023
    Yadav, V., & Sainburg, R. L. (2014). Limb dominance results from asymmetries in predictive and impedance control mechanisms. PLoS One, 9(4), e93892. https://doi.org/10.1371/journal.pone.0093892
    Yamada, M., Jacob, J., Hesling, J., Johnson, T., Wittenberg, G., & Kantak, S. (2024). Goal conceptualization has distinct effects on spatial and temporal bimanual coordination after left- and right- hemisphere stroke. Hum Mov Sci, 94, 103196. https://doi.org/10.1016/j.humov.2024.103196
    Yoo, I. G., Jung, M. Y., Yoo, E. Y., Park, J. H., Kang, D. H., & Lee, J. (2014). A comparison of hemisphere-specific training pattern in Inter-limb Learning Transfer (ILT) for stroke patients with hemiparesis. NeuroRehabilitation, 34(2), 277-286. https://doi.org/10.3233/NRE-131040
    Zaidel, E. (2001). Brain Asymmetry. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp. 1321-1329). Pergamon. https://doi.org/https://doi.org/10.1016/B0-08-043076-7/03548-8
    郭曉燕, & Kuo, H.-Y. (2009). 臺灣正常中老年人彩色路徑描繪測驗之常模研究
    A Normative Study on the Color Trails Test in Health Middle Age and Elderly Individuals in Taiwan. In.
    程思靜, 花茂棽, 廖御圻, & 張馨德. (2024). 台灣老年人路徑描繪測驗與彩色路徑描繪測驗心理計量特性與常模:初探研究 [Psychometric Properties and Norms of the Trail Making Test and the Color Trails Test for Taiwan's Elderly Population: A Preliminary Study]. 中華心理學刊, 66(2), 215-245. https://doi.org/10.6129/cjp.202406_66(2).0002

    無法下載圖示 校內:2030-07-01公開
    校外:2030-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE