簡易檢索 / 詳目顯示

研究生: 吳仲凱
Wu, Chung-Kai
論文名稱: 以離子化合物改質氧化鋅改善反式高分子太陽能電池
Modification of ZnO with ionic compounds for the improvement in inverted polymer solar cells
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 70
中文關鍵詞: 高分子太陽能電池氧化鋅界面修飾離子化合物
外文關鍵詞: polymer solar cell, ZnO modification, ionic compound
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以兩種離子型化合物作為氧化鋅添加劑,並將此改質之氧化鋅應用於高分子太陽能電池,藉由一步驟的方法,也就是將添加劑直接加入氧化鋅之前驅物當中,可以鈍化氧化鋅上之缺陷,提升氧化鋅界面與高分子主動層之親和性,得到更加平整、連續且沒有孔洞之薄膜。
    第一部分使用溴化十六烷基三甲銨(cetyltrimethylammonium bromide, CTAB)作為氧化鋅電子萃取層之添加劑,經證實CTAB上的四級銨溴離子基團能填補氧化鋅表面之氧缺陷,故經過改質過後的氧化鋅表面缺陷大幅下降,進一步使表面平整度上升,另外由於CTAB具有疏水的長碳鏈,使得改質過後的氧化鋅表面更趨疏水,此一性質可以讓氧化鋅與亦為疏水性的主動層材料PC71BM有更好的界面接觸。因此效率從未改質的7.31%提升至改質後最高的9.07%,約為24.1%的增幅。
    第二部分則使用羅丹明6G(Rhodamine 6G, R6G)作為氧化鋅的添加劑,R6G與CTAB同樣具有四級銨鹵素離子的基團,而將CTAB之長碳鏈以大量的苯環結構取代,數據顯示,同樣亦為疏水性結構的苯環也具有改變氧化鋅表面親疏水性之能力,再透過四級銨氯離子基團降低表面缺陷後,效率最高提升至8.91%,與未改質的元件相比,有21.9%之增幅。

    Enhanced performance of inverted bulk-heterojunction polymer solar cells (BHJ PSCs) can be realized by adding two ionic additives cetyltrimethylammonium bromide (CTAB) and Rhodamine 6G (R6G) into sol-gel ZnO precursor solution. Those additives have multiple features to affect the photoinduced charge transfer at the interface, that is, improvement of morphology of ZnO electron extraction layer (EEL), passivation of surface trap states, better charge selectivity as well as reduction in recombination losses at interface then overall lead to the improved fill factor (FF) and short circuit current density (Jsc). The best power conversion efficiency (PCE) for the CTAB-modified device is 9.07%, and the R6G counterpart demonstrates PCE 8.91%, with the 24.1% and 21.9% of improvement than the device based on pristine ZnO EEL (7.31%). We demonstrate the easy approach through modification of ionic additives which can dramatically influence optical, electrical and morphological properties of ZnO EEL, and enhance the performance of inverted bulk- heterojunction polymer solar cells.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XIII 符號與縮寫 XIV 符號 XIV 縮寫 XV 第1章 緒論 1 1-1 前言 1 1-2 有機太陽能電池簡介 3 1-2-1 有機太陽能電池之光電轉換原理 4 1-2-2 有機太陽能電池之結構與材料發展 8 1-3 陰極修飾層簡介 12 1-3-1 金屬氧化物作為電子萃取層 12 1-3-2 氧化鋅溶液製程簡介 13 1-4 氧化鋅界面修飾製程 15 1-4-1 高分子材料 15 1-4-2 小分子材料 19 1-4-3 自組裝單分子層 21 1-5 研究動機 22 第2章 以溴化十六烷基三甲銨改質氧化鋅改善反式高分子太陽能電池 24 2-1 前言 24 2-2 實驗部分 25 2-2-1 藥品與材料來源 25 2-2-2 元件組裝步驟 25 2-2-3 元件特性之量測 29 2-2-4 原子力顯微鏡之量測 29 2-2-5 掃描式電子顯微鏡量測 29 2-2-6 影像式接觸角量測儀之量測 30 2-2-7 UV-vis吸收光譜量測 30 2-2-8 光激發螢光圖譜之量測 31 2-2-9 X光與紫外光光電子能譜之分析 31 2-2-10 載子萃取能力之量測 31 2-3 結果與討論 31 2-3-1 CTAB對於氧化鋅表面特性影響 32 2-3-2 X射線光電子能譜測定CTAB對於氧化鋅之影響 34 2-3-3 CTAB改善氧化鋅之機制 36 2-3-4 CTAB添加劑對於電子萃取能力之提升 37 2-3-5 CTAB對於元件表現之影響 39 2-3-6 長碳鏈的效果 40 2-3-7 元件穩定性 42 第3章 以羅丹明6G改質氧化鋅改善反式高分子太陽能電池 44 3-1 前言 44 3-2 實驗部分 45 3-2-1 藥品與材料來源 45 3-2-2 元件組裝步驟 46 3-2-3 元件特性之量測 50 3-2-4 原子力顯微鏡之量測 50 3-2-5 掃描式電子顯微鏡量測 50 3-2-6 影像式接觸角量測儀之量測 51 3-2-7 UV-vis吸收光譜量測 51 3-2-8 光激發螢光圖譜之量測 51 3-2-9 X光與紫外光光電子能譜之分析 51 3-2-10 載子萃取能力之量測 52 3-3 結果與討論 52 3-3-1 R6G對於氧化鋅表面特性影響 53 3-3-2 X射線光電子能譜測定R6G對於氧化鋅之影響 55 3-3-3 R6G改善氧化鋅之機制 57 3-3-4 R6G添加劑對於電子萃取能力之提升 58 3-3-5 R6G對於元件表現之影響 60 3-3-6 苯環的效果 61 3-3-7 元件穩定性 63 第4章 總結與建議 65 第5章 參考文獻 66

    1. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, (revised 04/14, 2017).
    2. D. Kearns and M. Calvin, Journal of Chemical Physics, 1958, 29, 950-951.
    3. C. W. Tang, Applied Physics Letters, 1986, 48, 183-185.
    4. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science, 1992, 258, 1474-1476.
    5. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789.
    6. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Applied Physics Letters, 2001, 78, 841-843.
    7. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Advanced Functional Materials, 2003, 13, 85-88.
    8. Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li and G. Cao, Advanced Functional Materials, 2012, 22, 2194-2201.
    9. S. Zhang, L. Ye and J. Hou, Advanced Energy Materials, 2016, 6, 1502529.
    10. F. C. Krebs and K. Norrman, Progress in Photovoltaics: Research and Applications, 2007, 15, 697-712.
    11. M. P. de Jong, L. J. van Ijzendoorn and M. J. A. de Voigt, Applied Physics Letters, 2000, 77, 2255-2257.
    12. G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman and W. R. Salaneck, Journal of Electron Spectroscopy and Related Phenomena, 2001, 121, 1-17.
    13. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, Applied Physics Letters, 2002, 80, 2788-2790.
    14. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, Applied Physics Letters, 2006, 89, 143517.
    15. M. Y. Song, K.-J. Kim and D. Y. Kim, Solar energy materials and solar cells, 2005, 85, 31-39.
    16. A. Watanabe and A. Kasuya, Thin Solid Films, 2005, 483, 358-366.
    17. T.-W. Lee, J. Zaumseil, Z. Bao, J. W. Hsu and J. A. Rogers, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 429-433.
    18. F. C. Krebs, S. A. Gevorgyan and J. Alstrup, Journal of Materials Chemistry, 2009, 19, 5442.
    19. F. C. Krebs, Solar Energy Materials and Solar Cells, 2009, 93, 465-475.
    20. H. You, Y. Dai, Z. Zhang and D. Ma, Journal, 2007.
    21. C. Cheung, W. Song and S. K. So, Organic Electronics, 2010, 11, 89-94.
    22. 黃建榮,光連雙月刊, 2014, 55-60.
    23. Inverted device structure organic solar cells with nanoparticulate active layer, (https://www.newcastle.edu.au/research-and-innovation/centre/coe/research/organic-solar-cells/coralie).
    24. M. Yeonsong, Solar Energy Materials and Solar Cells, 2005, 85, 31-39.
    25. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho and A. J. Heeger, Advanced Materials, 2007, 19, 2445-2449.
    26. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Advanced Materials, 2006, 18, 572-576.
    27. W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Advanced Materials, 2004, 16, 1009-1013.
    28. J. Gilot, I. Barbu, M. M. Wienk and R. A. J. Janssen, Applied Physics Letters, 2007, 91, 113520.
    29. J. Liu, S. Shao, B. Meng, G. Fang, Z. Xie, L. Wang and X. Li, Applied Physics Letters, 2012, 100, 213906.
    30. Y. Zhou, H. Cheun, J. W. J. Potscavage, C. Fuentes-Hernandez, S.-J. Kim and B. Kippelen, Journal of Materials Chemistry, 2010, 20, 6189.
    31. C.-Y. Chang, K.-T. Lee, W.-K. Huang, H.-Y. Siao and Y.-C. Chang, Chemistry of Materials, 2015, 27, 5122-5130.
    32. Y. Vaynzof, D. Kabra, L. Zhao, P. K. Ho, A. T.-S. Wee and R. H. Friend, Applied Physics Letters, 2010, 97, 156.
    33. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, Applied Physics Letters, 2008, 93, 221107.
    34. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Advanced Materials, 2011, 23, 1679-1683.
    35. M. N. Kamalasanan and S. Chandra, Thin Solid Films, 1996, 288, 112-115.
    36. L. K. Jagadamma, M. Abdelsamie, A. El Labban, E. Aresu, G. O. Ngongang Ndjawa, D. H. Anjum, D. Cha, P. M. Beaujuge and A. Amassian, Journal of Materials Chemistry A, 2014, 2, 13321.
    37. S. K. Hau, H.-L. Yip, J. Zou and A. K. Y. Jen, Organic Electronic, 2009, 10, 1401-1407.
    38. S. K. Hau, H.-L. Yip and A. K. Y. Jen, Polymer Reviews, 2010, 50, 474-510.
    39. D. Liu and T. L. Kelly, Nature Photonics, 2013, 8, 133-138.
    40. W. Qin, X. Xu, D. Liu, C. Ma, L. Yang, S. Yin, F. Zhang and J. Wei, Journal of Renewable and Sustainable Energy, 2013, 5, 053106.
    41. F. C. Krebs, Y. Thomann, R. Thomann and J. W. Andreasen, Nanotechnology, 2008, 19, 424013.
    42. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T.-H. Lai, J. R. Reynolds and F. So, Nature Photonics, 2011, 6, 115-120.
    43. R. Steim, S. A. Choulis, P. Schilinsky and C. J. Brabec, Applied Physics Letters, 2008, 92, 093303.
    44. J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger and G. C. Bazan, Jorunal of American Chemical Society, 2011, 133, 8416-8419.
    45. T. Yang, M. Wang, C. Duan, X. Hu, L. Huang, J. Peng, F. Huang and X. Gong, Energy & Environmental Science, 2012, 5, 8208.
    46. J. Jo, J. R. Pouliot, D. Wynands, S. D. Collins, J. Y. Kim, T. L. Nguyen, H. Y. Woo, Y. Sun, M. Leclerc and A. J. Heeger, Advanced Materials, 2013, 25, 4783-4788.
    47. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang and C.-S. Hsu, Jorunal of American Chemical Society, 2010, 132, 4887-4893.
    48. Y. Cheng, Q. D. Yang, J. Xiao, Q. Xue, H. W. Li, Z. Guan, H. L. Yip and S. W. Tsang, ACS Applied Material Interfaces, 2015, 7, 19986-19993.
    49. B. A. Courtright and S. A. Jenekhe, ACS Applied Material Interfaces, 2015, 7, 26167-26175.
    50. X. Yang, R. Wang, C. Fan, G. Li, Z. Xiong and G. E. Jabbour, Organic Electronics, 2014, 15, 2387-2394.
    51. Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganäs and F. Zhang, Solar Energy Materials and Solar Cells, 2009, 93, 497-500.
    52. H. Kang, S. Hong, J. Lee and K. Lee, Advanced Materials, 2012, 24, 3005-3009, 2938.
    53. J. W. Shim, H. Cheun, J. Meyer, C. Fuentes-Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn and B. Kippelen, Applied Physics Letters, 2012, 101, 073303.
    54. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn and B. Kippelen, Science, 2012, 336, 327-332.
    55. X. Yu, X. Yu, J. Zhang, D. Zhang, H. Cai and Y. Zhao, RSC Adv., 2015, 5, 58966-58972.
    56. X. Yu, X. Yu, J. Zhang, G. Zhao, J. Ni, H. Cai and Y. Zhao, Solar Energy Materials and Solar Cells, 2014, 128, 307-312.
    57. X. Guan, K. Zhang, F. Huang, G. C. Bazan and Y. Cao, Advanced Functional Materials., 2012, 22, 2846-2854.
    58. C. Duan, K. Zhang, X. Guan, C. Zhong, H. Xie, F. Huang, J. Chen, J. Peng and Y. Cao, Chemical Society, 2013, 4, 1298-1307.
    59. F. Liu, Z. A. Page, V. V. Duzhko, T. P. Russell and T. Emrick, Advanced Materials, 2013, 25, 6868-6873.
    60. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, Journal Material Chemistry A, 2013, 1, 2582-2587.
    61. W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang and C. Li, Journal Material Chemistry A, 2015, 3, 10660-10665.
    62. C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma and J. Fang, Angew. Chem. Int. Ed., 2013, 52, 3417-3420.
    63. X. Ouyang, R. Peng, L. Ai, X. Zhang and Z. Ge, National Photon, 2015, 9, 520-524.
    64. C. Goh, S. R. Scully and M. D. McGehee, Journal of Applied Physics, 2007, 101, 114503.
    65. S. K. Hau, H.-L. Yip, O. Acton, N. S. Baek, H. Ma and A. K.-Y. Jen, Journal of Materials Chemistry, 2008, 18, 5113-5119.
    66. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma and A. K. Y. Jen, Advanced Materials, 2008, 20, 2376-2382.
    67. H.-L. Yip, S. K. Hau, N. S. Baek and A. K.-Y. Jen, Applied Physics Letters, 2008, 92, 179.
    68. S. K. Hau, H.-L. Yip, H. Ma and A. K. Y. Jen, Applied Physics Letters, 2008, 93, 233304.
    69. C.-Y. Li, Y.-N. Chou, J.-R. Syu, S.-N. Hsieh, T.-D. Tsai, C.-H. Wu, T.-F. Guo, W.-C. Hsu, Y.-J. Hsu and T.-C. Wen, Organic Electronics, 2011, 12, 1477-1482.
    70. S. N. Hsieh, S. W. Hsiao, T. Y. Chen, C. Y. Li, C. H. Lee, T. F. Guo, Y. J. Hsu, T. L. Lin, Y. Wei and T. C. Wen, Journal Material Chemistry, 2011, 21, 8715-8720.
    71. K. Sun, B. Zhao, A. Kumar, K. Zeng and J. Ouyang, ACS Applied Material Interfaces, 2012, 4, 2009-2017.

    無法下載圖示 校內:2021-06-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE