| 研究生: |
黃祺桂 Huang, Chi-Gui |
|---|---|
| 論文名稱: |
AMN1基因對酵母菌Saccharomyces cerevisiae生存競爭的影響 Influence of AMN1 gene to the fitness of yeast Saccharomyces cerevisiae |
| 指導教授: |
宋皇模
Sung, Huang-Mo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 酵母菌 、聚集表型 、非聚集表型 、AMN1基因表現 、壓力環境 、競爭優勢 |
| 外文關鍵詞: | Saccharomyces cerevisiae, clumping phenotype, single cell phenotype, expression of AMN1, stress environment, fitness |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自然演化歷程中酵母菌的聚集行為(clustering)為生存策略的一種,用以因應環境的變化提高生存力。母子細胞分離不全之聚集表型(clumping phenotype)為子細胞與母細胞間的隔膜(septum)在細胞分裂時無法順利分裂所形成,而AMN1基因便是影響著酵母菌細胞分離之重要角色;同時AMN1基因具有單一核甘酸多型性(Single Nucleiotide Polymorphism;SNP)的特徵,因此胺基酸序列的不同也將使得野生酵母菌株RM(聚集表型)與實驗室菌株BY(不聚集表型)發展出不同的細胞表型。此外,AMN1基因除了影響酵母菌細胞的聚集表型,同時也作為反式調控因子來間接調控其他下游基因的表現,其中包含了受壓力環境所誘導表現的相關基因,進而可能影響壓力環境耐受性。在本篇論文中,我利用具有野生菌株RM(聚集表型),與三種非聚集表型菌株(AMN1基因剔除菌株#6、定點突變菌株#6-1、實驗室菌株BY)的共培養,來觀察AMN1基因表現程度如何影響細胞在生長環境下的生存,同時給予多樣的生長環境以模擬自然中可能面對之環境壓力。在我的結果當中可觀察到不同環境對於酵母菌細胞型態(聚集或非聚集表型)與生存有著不同程度的影響:野生菌株RM(聚集表型)因其經常面臨多變的環境而發展出快速適應之生存力與多元抗壓機制,在與實驗室菌株BY的競爭當中除了高鹽壓力環境外,皆顯示了野生菌株更具競爭優勢的結果;實驗室菌株(非聚集表型)因人擇的篩選使其在碳養分的利用更有效率,同時由於其基因多型性所造就之獨特的基因表現,使其在特定的壓力環境下(如鹽類環境)生存。而在野生菌株RM與基因剔除菌株#6的競爭當中,我更觀察到AMN1基因的剔除反而可能提高菌株的生存與競爭力,在五種培養環境(不含37oC與酒精環境)皆顯示基因剔除菌株#6具有更好的競爭優勢。因此我認為在細胞當中,聚集表型對於野生菌株RM在壓力環境當中的生存應是有貢獻的;同時AMN1基因的存在與否也將會影響到酵母菌細胞對於壓力環境的適應性。
AMN1 is the key gene to mediate the cell separation and then affect the phenotype of strain. The strain carried an Amn1p368D sequence would perform as a clumping phenotype, while carried an Amn1p368V sequence performed as a single-cell phenotype. Besides, AMN1 can also plays a role as trans regulatory element (TREs) to affect different gene expression, which including the expression of stress-related genes under stress environment. To figure out whether the expression of AMN1 affect the cells’ fitness under different stress, I co-cultured the wild strain RM, which cells express clumping phenotype, with three single-cell phenotype strains like the lab strain BY, the mutant strain #6-1, and the AMN1 gene knock-out strain #6 in several different stress environment, respectively. After ten days culturing, I found that the wild strain RM shows a better fitness comparing to the lab strain BY in every stress environment except for salt stress environment, and that the gene knock-out strain #6 also shows a better fitness comparing to the wild strain RM in most environment: general environment, 23oC permissive temperature environment, osmotic stress (sorbitol and salt), and oxidative stress.
The results that RM shows a better fitness indicated the clumping phenotype might has a positive effect on cells’ survival, besides the different evolvement between wild strain and lab strain; and that a better fitness of #6 indicated the expression of AMN1 also has the effect on cells’ fitness to stress environment.
Avery S., Stratford M. & van West. P. Stress in yeast and filamentous fungi. Acad Press. pp. 98-102. (2008)
Boraas M. E., Seale D. B., Boxhorn J. E. Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol Ecol 12:153-64. (1998)
Brem R. B., Yvert G., Clinton R. & Kruglyk L. Genetic dissection of transcriptional regulation in budding yeast. Science. 296:752-755. (2002)
Berry D. B. & Gasch A. P. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell. 19(11):4580-7. (2008)
Bester M. C., Jacobson D. & Bauer F. F. Many Saccharomyces cerevisiae cell wall protein encoding genes are coregulated by Mss11, but cellular adhesion phenotypes appear only Flo protein dependent. G3(Bethesda). 2(1):131-41. (2012)
Bleoanca I., Silva A. R. C., Pimentel C., Rodrigues-Pousada C. & Menezes R. D. A. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng. 116:697-705. (2013)
Calleja G. B. Cell aggregation. In The Yeasts, vol.2, 2nd edition. (eds. Rose A. H. & Harrison J. S.), Academic, London, pp. 165-238. (1987)
Carlsen H. N., Degn H. & Lloyd D. Effects of alcohols on the respiration and fermentation of aerated suspensions of baker's yeast. J Gen Microbiol. 137(12):2879-83. (1991)
Claro F. B., Rijsbrack K. & Soares E. V. Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress. J Appl Microbiol. 102:693-700. (2007)
Cullen P. J. & Sprague G. F. Jr. The regulation of filamentous growth in yeast. Genetics. 190(1):23-49. (2012)
Domingues L., Vicente A. A., Lima N. & Teixeira J. A. Applications of yeast flocculation in Biotechnological processes. Biotechnol Bioproc E 5:288-305. (2000)
Dietvorst J. & Brandt A. Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation. Yeast. 25:891-90. (2008)
Dhar R., Sägesser R., Weikert C., Yuan J. & Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol. 24:1135-1153. (2011)
Drozdova P. B., Tarasov O. V., Matveenko A. G., Radchenko E. A., Sopova J. V., Polev D. E., Inge-Vechtomov S. G. & Dobrynin P. V. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strains of the Peterhof genetic collection. PLoS One. 11:e00154722. (2016)
Ehrenreich I. M., Gerke J. P. & Kruglyak L. Genetic dissection of complex traits in yeast: insights from studies of gene expression and other phenotypes in the BYxRM cross. Cold Spring Harb Symp Quant Biol. 74:145-53. (2009)
Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D. & Brown P. O. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 11:4241-4257. (2000)
Guo B., Styles C. A., Feng Q. & Fink G. R. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A. 97(22):12158-63. (2000)
Gancedo J. M. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev. 25(1):107-23. (2001)
Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Véronneau S., Dow S., Lucau-Danila A., Anderson K., André B., Arkin A. P., Astromoff A., El-Bakkoury M., Bangham R., Benito R., Brachat S., Campanaro S., Curtiss M., Davis K., Deutschbauer A., Entian K. D., Flaherty P., Foury F., Garfinkel D. J., Gerstein M., Gotte D., Güldener U., Hegemann J. H., Hempel S., Herman Z., Jaramillo D. F., Kelly D. E., Kelly S. L., Kötter P., LaBonte D., Lamb D. C., Lan N., Liang H., Liao H., Liu L., Luo C., Lussier M., Mao R., Menard P., Ooi S. L., Revuelta J. L., Roberts C. J., Rose M., Ross-Macdonald P., Scherens B., Schimmack G., Shafer B., Shoemaker D. D., Sookhai-Mahadeo S., Storms R. K., Strathern J. N., Valle G., Voet M., Volckaert G., Wang C. Y., Ward T. R., Wilhelmy J., Winzeler E. A., Yang Y., Yen G., Youngman E., Yu K., Bussey H., Boeke J. D., Snyder M., Philippsen P., Davis R. W. & Johnston M. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418:387-391. (2002)
Gresham. D., Ruderfer D. M., Pratt S. C., Schacherer J., Dunham M. J., Bostein D. & Kruglyak L. Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science. 311:1932-1936. (2006)
Gibson B. R., Lawrence S. J., Leclaire J. P., Powell C. D. & Smart K. A. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 31:535-569. (2007)
Govender P., Domingo J. L., Bester M. C., Pretorius I. S. & Bauer F. F. Controlled expression of the dominant flocculation gene flo1, flo5, flo11 in Saccharomyces cerevisiae. Appl Environ Microbiol. 74(19):6041-52. (2008)
Gagneur J., Stegle O., Zhu C., Jakob P., Tekkedil M. M., Aiyar R. S., Schuon A. K., Pe'er D. & Steinmetz L. M. Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genet. 9(9):e1003803. (2013)
Gianvito P. D., Tesnière C., Suzzi G., Blondin B. & Tofalo R. Flo5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci Rep. 7:10786. (2017)
García-Ríos E., Morard M., Parts L., Ltit G. & Guillamon J. M. The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics. 18:159. (2017)
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 66:300-372. (2002)
Halme A., Bumgarner S., Styles C. & Fink G. R. Genetic and epigenetic regulation of the Flo gene family generates cell-surface variation in yeast. Cell. 116(3):405-15. (2004)
Hirasawa T., Yoshikawa K., Nakakura Y., Nagahisa K., Furusawa C., Katakura Y., Shimizu H. & Shioya S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol. 131:34-44. (2007)
Hope E. A., Amorosi C. J., Miller A. W., Dang K., Heil C. S. & Dunham M. J. Experimental evolution reveals favored adaptive routes to cell aggregation in yeast. Genetics. 206:1153-1167. (2017)
Kubota S., Takeo I., Kume K., Kanai M., Shitamukai A., Mizunuma M., Miyakawa T., Shimoi H., Iefuji H. & Hirata D. Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem. 68:968-972. (2004)
Kvitek D. J., Will J. L. & Gasch A. P. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet. 4:e1000223. (2008)
Koschwanez J. H., Foster K. R. & Murray A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 8:e1001122. (2011)
Liu H., Styles C. A. & Fink G. R. Saccharomyces cerevisiae S288C has a mutation in flo8, a gene required for filamentous growth. Genetics. 144(3):967-978. (1996)
Lo W. S. & Dranginis A. M. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 9(1):161-71. (1998)
Levin D. E. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 69(2):262-291. (2005)
Lodolo E. J., Kock J. L. F., Axcell B. C. & Brooks M. The yeast Saccharomyces cerevisiae – the main character in beer brewing. FEMS Yeast Res. 8:1018-1036. (2008)
Luo Z. & van Vuuren H. J. J. Functional analyses of pau gene in Saccharomyces cerevisiae. Microbiology 155:4036-4049. (2009)
Li E., Yue F., Chang Q., Guo X., He X. & Zhang B. Deletion of intragenic tandem repeats in unit C of Flo1 of Saccharomyces cerevisiae increases the conformational stability of flocculin under acidic and alkaline conditions. PLoS One. 8(1): e53428. (2013)
Li J., Wang L., Wu X., Fang O., Wang L., Lu C., Yang S., Hu X. & Luo Z. Polygenic molecular architecture underlying non-sexual cell aggregation in budding yeast. DNA Res. 20:55-66. (2013)
Lewis J. A., Broman A. T., Will J. & Gasch A. P. Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains. Genetics. 198(1):369-82. (2014)
Morano K. A., Grant C. M. & Moye-Rowley W. S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics. 190(4):1157-1195 (2012)
Sun W., Yu T. & Li K. C. Detection of eQTL modules mediated by activity levels of transcription factors. Bioinformatics. 23:2290-2297. (2007)
Ouspenski I. I., Eledge S. J. & Brinkley B. R. New yeast gene important for chromosome integrity and segregation identified by dosage effects on genome stability. Nuclei Acids Res. 27:3001-3008. (1999)
Posas F., Chambers J. R., Heyman J. A., Hoeffler J. P., de Nadal E. & Arino J. The transcriptional response of yeast to saline stress. J Biol Chem. 275:17249-17255. (2000)
Pedreño Y., Gimeno-Alacañiz J. V., Matallana E. & Argüelles J-C. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalose genes. Arch Microbiol. 177:494-499. (2002)
Pizarro F. J., Jewett M. C., Nielsen J. & Agosin E. Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol. 74:6358-6368. (2008)
Pastor M. M., Proft M. & Pascual-Ahuir A. Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. J Biol Chem. 284(44):30307-17. (2009)
Roy A., Lu C. F., Marykwas D. L., Lipke P. N. & Kurjan J. The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol. 11(8):4196-206. (1991)
Roberts C. J., Nelson B., Marton M.J., Stoughton R., Meyer M. R., Bennett H. A., He Y. D., Dai H., Walker W. L., Hughes T. R., Tyers M., Boone C. & Friend S. H. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science. 287(5454):873-80. (2000)
Ronald J. & Akey J. M. The evolution of gene expression QTL in Saccharomyces cerevisiae. PLoS ONE. 2:e678. (2007)
Ratcliff W. C., Denison R. F., Borrello M. & Trayisano M. Experimental evolution of multicellularity. Proc Natl Acad Sci U.S.A. 109:1595-1600. (2012)
Ratcliff W. C., Pentz J. T. & Travisano M. Tempo and mode of multicellular adaptation in experimentally-evolved Saccharomyces cerevisiae. Evolution. 67:1573-1581. (2013)
Ratcliff W. C., Fankhauser J. D., Roger D. W., Greig D. & Travisano M. Origins of multicellular evolvability in snowflask. Nat Commun. 6:6102. (2015)
Rossouw D., Bagheri B., Setati M. E. & Bauer F. F. Co-flocculation of yeast species, a new mechanism to govern population dynamics in microbial ecosystems. PLoS One 10:e0136249. (2015)
Stratford M. Lectin-mediated aggregation of yeasts–yeast flocculation. Biotech Genet Eng Rev. 10:283-341. (1992)
Smith E. N. & Kruglyak L. Gene–environment interaction in yeast gene expression. PLoS Biol. 6(4):e83. (2008)
Smukalla S., Caldara M., Pochet N., Beauvais A., Guadagnini S. Yan C., Vinces M. D., Jansen A., Prevost M. C., Latgé J. P., Fink G. R., Foster K. R. & Verstrepen K. J. Flo1 is variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 135:726-37. (2008)
Stewart G. G. The Horace brown medal lecture: forty years of brewing research. J Inst Brew. 115:3-29. (2009)
Stanley D. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol. 109:13-24. (2010)
Soares E. V. Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol. 110(1):1-18. (2011)
Townsend G. F. Influencing yeast growth with hydrogen peroxide. Bull Torrey Bot Club. 88(1):38-42. (1961)
Tofalo R., Perpetuini G., Gianvito P. D., Schirone M., Corsetti A. & Suzzi G. Genetic diversity of flo1 and flo5 genes in wine flocculent Saccharomyces cerevisiae strains. Int J Food Microbil. 191:45-52. (2014)
Tangsombatvichit P., Semkiv M. V., Sibirny A. A., Jensen L. T., Ratanakhanokchai K. & Soontorngun N. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Res. 15(2). pii: fou002. (2015)
Tofalo R., Perpetuini G., Di Gianvito P., Arfelli G., Schirone M., Corsetti A. & Suzzi G. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation. J Appl Microbiol. 120(6):1574-84. (2016)
Verstrepen K. J., Reynolds T. B. & Fink G. R. Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2(7):533-40. (2004)
Voth W. P., Olsen A. E., Sbia M., Freedman K. H. & Stillman D. J. Ace2, cbk1, and bud4 in budding and cell separation. Eukaryot Cell. 4:1018-1028. (2005)
Verstrepen K.J. & Klis F. M. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5-15. (2006)
Verghese J., Abrams J., Wang Y. & Morano K. A. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev. 76 pp. 120-121. (2012)
Wieser R., Adam G., Wagner A., Schüller C., Marchler G., Ruis H., Krawiec Z. & Bilinski T. Heat shock factor-independent heat control of transcription of the ctt1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae. J Biol Chem. 266:12406-12411. (1991)
Wang Y., Shirogane T., Liu D., Harper J. W. & Elledge S. J. Exit from exit: resetting the cell cycle through amn1 inhibition of g protein signaling. Cell. 112:697-709. (2003)
Wang A., Raniga P. P., Lane S., Lu Y. & Liu H. P. Hyphal chain formation in Candida albicans: cdc28-hgc1 phosphorylation of efg1 represses cell separation genes. Mol Cell Biol. 29:4406-4416. (2009)
Weiss E. L., Kurischko C., Zhang C., Shokat K., Drubin D. G. & Luca F. C. The Saccharomyces cerevisiae mob2p-cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. J Cell Biol. 158:885-900. (2002)
Wolpert L. & Szathmáry E. Multicellularity: evolution and the egg. Nat 420:745. (2002)
Wloch-Salamon D. M. & Bem A. E. Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. J Appl Microbiol 114: 287–298. (2013)
Westman J. O. & Franzén C. J. Current progress in high cell density yeast bioprocesses for bioethanol production. Biotechnol J. 10:1185-1195. (2015)
Yvert G., Brem R. B., Whittle J., Akey J. M., Foss E., Smith E. N., Mackelprang R. & Kruglyak L. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet. 3:57-64. (2003)
Ye C., Galbraith S. J., Liao J. C. & Eskin E. Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. PLoS Comput Biol 5:e1000311. (2009)
Zheng W., Zhao H., Hancera E., Steinmetz L. M. & Snyder M. Genetic analysis of variation in transcription factor binding in yeast. Nature. 464:1187-1191. (2010)
Zyrina A. N., Smirnova E. A., Markova O. V., Severin F. F. & Knorre D. A. Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 83:e02759-16. (2017)