簡易檢索 / 詳目顯示

研究生: 戴浩安
Dai, Hao-An
論文名稱: 鹼活化還原碴及其發泡特性對制熱工程材料之影響
The effect of alkali-activated electric arc furnace slag and foaming characteristics on heat-suppression materials
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 142
中文關鍵詞: 鹼活化還原碴無機發泡孔隙結構制熱工程材料
外文關鍵詞: alkali activated EAF ladle slag, inorganic foaming, pore structure, heat-suppression materials
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電弧爐還原碴(EAF ladle slag),化學組成富含Ca、Si元素,與水泥、高爐石相似,然因含f-CaO,當做為工程材料應用時,有健性不穩定之問題。本研究首先應用鹼活化程序安定化還原碴,並以鋁粉(Al powder)做為發泡劑,探討不同條件下鹼活化還原碴之發泡特性,將其製作成不同密度之試體,再與市面上常見之防火、隔熱、隔音建材做功能比較,評估鹼活化還原碴發泡漿體製作制熱工程材料之可行性。
    研究結果顯示,鹼活化程序能克服還原碴健性不穩定之問題,使其在熱壓膨脹試驗後長度變化量低於0.2%,符合規範所規定之0.8%。且還原碴具有C2S等低水化熱之礦物,能改善鹼活化應用於工程上所遇到之速凝問題。經研究發現鹼活化還原碴發泡漿體製作過程:(1)水膠比(W/B)從0.3提高到0.6,漿體的相對坍流度從141%升高到350%,密度從1000 kg/m3降低到530 kg/m3,平均發泡孔徑從0.38 mm擴張到0.77 mm;(2)鹼模數比(Ms)上升時,會導致產氣量從210 mL下降到133 mL,進而讓密度從595 kg/m3上升到1184 kg/m3,同時孔徑也會從0.71 mm縮小到0.35 mm;(3)含鹼當量(Na2O%)增加時,發泡產氣速率增快進而造成漿體有塌陷之現象,亦即含鹼當量從4%提高到6%時,密度會從595 kg/m3上升到810 kg/m3,而提高至7%則會出現嚴重的塌陷,孔徑分布也會變得非常不均勻;(4)穩泡劑中的活性劑SDBS可以有效的分散並穩定氣泡之結構,使平均孔徑0.9到0.71 mm的大孔縮小至0.60到0.42 mm,而穩泡劑中的增稠劑三仙膠可以增強泡沫壁之強度,讓漿體密度從595 kg/m3上升至670 kg/m3以及抗壓強度從0.98 MPa上升至1.34 MPa。綜上而言,加入調質穩泡劑後可得最佳控制參數為W/B = 0.3~0.45、Na2O% = 4%、Ms = 1.25~1.75、發泡劑為0.2 wt.%,依此控制參數可產製四種不同密度(600、800、1000以及2000 kg/m3)的制熱工程材料。密度較低的制熱工程材料有較為良好之隔熱效果;密度較高者有較好的機械強度以及良好的隔音效果。此外制熱工程材料具有良好之防火能力。
    制熱工程材料具備優於水泥混凝土及市售岩棉的防火性能,且隔熱效果為一般混凝土的3倍,而其隔音性能優於隔音岩棉。且環境相容性方面則皆可符合法規標準。防火方面,岩棉背溫高達155.9℃,制熱工程材料背溫約為63℃,且相較於卜特蘭I型水泥(OPC)與岩棉之噴燒面均出現破損不完整,制熱工程材料則保持完整,顯示制熱工程材料在防火性能上的優勢。隔熱方面,制熱工程材料之熱傳導係數約為0.5 W/m∙k為OPC的三分之一(1.61 W/m∙k)。隔音方面,密度為2000 kg/m3的制熱工程材料隔音效果優於水泥,且減噪≧30 dB,而密度較低者其隔音性能仍優於市售常見之隔間填充材岩棉。亦即,鹼活化還原碴產製之制熱工程材料具有隔熱、防火、隔音性能及環境相容性,為一具發展潛力之綠色工程材料。

    This study used alkali-activated technology to stabilize electric arc furnace ladle slag (EAF ladle slag) and manufacture heat-suppression materials with EAF ladle slag. Since EAF ladle slag has a similar chemical composition to blast furnace slag and cement, it seems like a pozzolan material. However, ladle slag is inappropriate to be a pozzolanic material as the soundness of ladle slag cannot meet regulations due to ladle slag containing free-MgO (f-MgO) and free-CaO (f-CaO). Alkali activated technology can transform the f-MgO and f-CaO of ladle slag into Mg(OH)2, Ca(OH)2 or calcium silicate hydrate (C-S-H gel) at the beginning of hydration reaction ensuring the soundness of ladle slag meets the specification. With urbanization becoming more and more rapid, human life is heavily dependent on air conditioning. In light of this, if our building has excellent thermal insulation performance of and fireproof, we can save a lot of energy. In order to produce heat-suppression materials, we add foam agent in this system to let alkali-activated concrete become alkali-activated aerated concrete. After we added the foam agent in this system, we manufactured heat-suppression materials with different density and lower thermal conductivity compared to traditional cement which means it has better thermal insulation performance. In addition, heat-suppression materials also have better fireproofing and sound insulating performance than mineral wool. Heat-suppression materials are suitable for the manufacture of composite functional building materials such as heat insulation, fire prevention, and sound insulation.

    目 錄 摘 要I 英文摘要III 致謝VIII 目 錄X 表目錄(List of Table)XIII 圖目錄(List of Figure)XV 第一章前 言1 1-1研究動機與目的1 1-2研究內容 2 第二章文獻回顧 4 2-1電弧爐還原碴之特性與再利用概況4 2-1-1還原碴之產出特性4 2-1-2還原碴資源化與再利用困境8 2-1-3還原碴安定化技術10 2-2鹼活化安定還原碴15 2-2-1鹼活化反應機制17 2-2-2鹼活化影響因素19 2-2-3鹼活化發展困境23 2-2-4鹼活化安定還原碴及其優點26 2-2-5鹼活化還原碴綜合評析30 2-3輕質混凝土31 2-3-1輕質混凝土之種類31 2-3-2氣泡混凝土產氣方式35 2-3-3氣泡孔隙36 2-3-4氣泡混凝土優缺點與其應用38 2-4綠色工程材料41 2-4-1隔熱材料41 2-4-2防火材料42 2-4-3吸音與隔音材料43 2-5小結44 第三章研究材料、設備與方法46 3-1研究架構與實驗流程46 3-2研究材料與設備49 3-2-1還原碴之前處理49 3-2-2實驗試藥與設備49 3-3實驗設計與分析方法56 3-3-1還原碴基本特性56 3-3-2鹼活化漿體調質對發泡行為之影響59 3-3-3制熱工程材料功能特性之探討63 3-3-4制熱工程材料之環境相容性64 第四章結果與討論66 4-1還原碴之特性66 4-1-1還原碴之物化特性66 4-1-2鹼活化還原碴健性之評估71 4-1-3還原碴對漿體初終凝之影響73 4-1-4小結74 4-2鹼活化參數對漿體發泡特性之影響76 4-2-1水膠比對發泡漿體之影響76 4-2-2鹼模數比對發泡漿體之影響83 4-2-3含鹼當量對發泡漿體之影響91 4-2-4穩泡劑對發泡漿體之影響96 4-2-5小結108 4-3制熱工程材料之功能特性探討111 4-3-1制熱工程材料之抗壓與吸水率特性111 4-3-2制熱工程材料之隔熱特性112 4-3-3制熱工程材料之防火能力114 4-3-4制熱工程材料之隔音效果116 4-3-5制熱工程材料之環境相容性117 4-3-6小結129 4-4鹼活化還原碴產製制熱工程材料之評估131 第五章結論與建議132 5-1結論132 5-2建議133 參考文獻 135

    Aldridge, D., Introduction to foamed concrete: what, why, how? In Use of Foamed Concrete in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5 July 2005, Thomas Telford Publishing, pp. 1–14, 2005.
    Aldridge, D., & Ansell, T., Foamed concrete: Production and equipment design, properties, applications and potential, In Proceedings of One Day Seminar on Foamed Concrete: Properties, Applications and Latest Technological Developments, Loughborough University, pp. 1–7, 2001
    Aydin, S., & Baradan, B., High temperature resistance of alkali-activated slag- and Portland cement-based reactive powder concrete, ACI Materials Journal, Vol. 109, NO. 4, pp. 463–470, 2012.
    Bakharev, T., Sanjayan, J. G., & Cheng, Y. B., Effect of admixtures on properties of alkali-activated slag concrete, Cement and Concrete Research, Vol. 30, NO. 9, pp. 1367–1374, 2000.
    Bakharev, T., Sanjayan, J. G., & Cheng, Y. B., Alkali activation of Australian slag cements, Cement and Concrete Research, Vol. 29, NO. 1, pp. 113–120, 1999.
    Bernal, S. A., Rodrígueza, E. D., de Gutiérrez, R. M., & Provis, J. L., Performance of alkali-activated slag mortars exposed to acids, Journal of Sustainable Cement-Based Materials, Vol. 1, NO. 3, pp. 138–151, 2012.
    Burciaga-Díaz, O., Escalante-García, J. I., Arellano-Aguilar, R., & Gorokhovsky, A., Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements, Journal of the American Ceramic Society, Vol. 93, NO. 2, pp. 541–547, 2010.
    Cheng, H., Yi, H., Wang, J., Wan, Y., Xu, G., & Chen, H., An overview of utilization of steel slag, Procedia Environmental Sciences, Vol. 16, pp. 791–801, 2012.
    Collins, F., & Sanjayan, J. G., Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete, Cement and Concrete Research, Vol. 30, NO. 9, pp. 1401–1406, 2000.
    Crawford, C. B., & Burn, K. N., Building damage from expansive steel slag backfill, Journal of the Soil Mechanics and Foundations Division, Vol. 95, NO. 6, pp. 1325–1334, 1969.
    Cullity, B. D., Elements of x-ray diffraction, Prentice Hall, Upper Saddle, 2001.
    Davidovits, J., Properties of Geopolymer Cements. In First international conference on alkaline cements and concretes, Scientific Research Institute on Binders and Materials Kiev, Ukraine, Vol.1, pp. 131–149, 1994.
    Delair, S., Prud’homme, É., Peyratout, C., Smith, A., Michaud, P., Eloy, L., Joussein, Emmanuel. Rossignol, S., Durability of inorganic foam in solution: the role of alkali elements in the geopolymer network, Corrosion Science, Vol. 59, pp. 213–221, 2012.
    Ducman, V., & Korat, L., Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Materials Characterization, Vol. 113, pp. 207–213, 2016.
    Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & vanDeventer, J. S., Geopolymer technology: The current state of the art, Journal of Materials Science, Vol. 42, NO. 9, pp. 2917–2933, 2007.
    Duxson, P., & Provis, J. L., Designing precursors for geopolymer cements, Journal of the American Ceramic Society, Vol. 91, NO. 12, pp. 3864–3869, 2008.
    Fernández-Jiménez, A., Palomo, J. G., & Puertas, F., Alkali-activated slag mortars: Mechanical strength behaviour, Cement and Concrete Research, Vol. 29, NO. 8, pp. 1313–1321, 1999.
    Giannakou, A., & Jones, M. R., Potential of foamed concrete to enhance the thermal performance of low-rise dwellings. In Innovations and Developments In Concrete Materials And Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 9--11 September 2002, Thomas Telford Publishing, UK, pp. 533–544, 2002.
    Hajimohammadi, A., Ngo, T., Mendis, P., & Sanjayan, J., Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Materials & Design, 120, pp. 255–265, 2017.
    Jones, M. R., & McCarthy, A., Preliminary views on the potential of foamed concrete as a structural material, Magazine of Concrete Research, Vol. 57, NO. 1, pp. 21–31, 2005.
    Kearsley, E. P., & Mostert, H. F., The use of foamed concrete in refractories. In Use of Foamed Concrete in Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 5 July 2005. Thomas Telford Publishing, UK, pp. 89–96, 2005.
    Kearsley, E. P., & Wainwright, P. J., The effect of porosity on the strength of foamed concrete, Cement and Concrete Research, Vol. 32, NO. 2, pp. 233–239, 2002.
    Kearsleyl, E., & Visagie, M., Properties of Foamed Concrete as Influenced by Air-Void Parameters, Concrete Beton, Vol. 101, pp. 9–13, 2002.
    Krivenko, P., Petropavlovsky, O., & Petranek, V., High strength alkali activated slag cements with controlled setting times and early strength gain, Advanced Materials Research, Vol. 1100, pp. 44–49, 2015.
    Leitch, F. N., The properties of aerated concrete in service. In Proceedings of the Second International Conference on Lightweight Concretes, London, 1980.
    Li, C., Sun, H., & Li, L., A review : The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements, Cement and Concrete Research, Vol. 40, NO. 9, pp. 1341–1349, 2010.
    Mindess, S., & Young, J. F., Concrete (1st ed.)., Prentice Hall, Upper Saddle River (New Jersey), 1981.
    Nambiar Kunhanandan, E., & Ramamurthy, K., Air‐void characterisation of foam concrete, Cement and Concrete Research, Vol. 37, NO. 2, pp. 221–230, 2007.
    Namsone, E., Šahmenko, G., & Korjakins, A., Durability properties of high performance foamed concrete, Procedia Engineering, Vol. 172, pp. 760–767, 2017.
    Newman, J., & Choo, B. S., Advanced Concrete Technology 3 (1st ed.). Elsevier, Burlington, 2003.
    Nguyen, T. T., Bui, H. H., Ngo, T. D., & Nguyen, G. D., Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete, Materials & Design, Vol. 130, pp. 103–119, 2017.
    Pacheco-torgal, F., Castro-Gomes, J., & Said Jalali., Alkali-activated binders : A review Part 1 . Historical background , terminology , reaction mechanisms and hydration products, Construction and Building Materials, Vol. 22, NO. 7, pp. 1305–1314, 2008.
    Palomo, A., Grutzeck, M. W., & Blanco, M. T., Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, Vol. 29, pp. 1323–1329, 1999.
    Ramamurthy, K., Kunhanandan Nambiar, E. K., & Indu Siva Ranjani, G., A classification of studies on properties of foam concrete, Cement and Concrete Composites, Vol. 31, NO. 6, pp. 388–396, 2009.
    Sheikholeslami, R., Al-Mutaz, I. S., Tan, S., & Tan, S. D., Some aspects of silica polymerization and fouling and its pretreatment by sodium aluminate, lime and soda ash, Desalination, Vol. 150, NO. 1, pp. 85–92, 2002.
    Shi, C., & Day, R. L., A calorimetric study of early hydration of alkali-slag cements, Cement and Connete Research, Vol. 25, NO. 6, pp. 1333–1346, 1995.
    Short, A., & Kinniburgh, W., Lightweight Concrete. C.R. Books Ltd., London, 1963.
    Song, S., & Jennings, H. M., Pore solution chemistry of alkali-activated ground, Cement and Concrete Research, Vol. 29, NO. 2, pp. 159–170., 1999.
    Valore, R. C., Cellular concretes Part 2 physical properties. In Journal Proceedings, Vol. 50, pp. 817–836, 1954.
    Wang, S.-D., Scrivener, K. L., & Pratt, P.L., Factors affecting the strength of alkali-activated slag, Cement and Concrete Researc, Vol. 24, NO. 6, 1033–1043, 1994.
    Wang, S.-D., & Scrivener, K. L., Hydration products of alkali activated slag cement, Cement and Concrete Research, Vol. 25, NO. 3, 561–571, 1995
    Wee, T., Babu, D. S., Tamilselvan, T., & Lim, H., Air-void system of foamed concrete and its effect on mechanical properties, ACI Materials Journal, Vol. 103, NO. 1, 45, 2006.
    Zhang, J., Klasky, M., & Letellier, B. C., The aluminum chemistry and corrosion in alkaline solutions, Journal of Nuclear Materials, Vol. 384, NO. 2, pp. 175–189, 2009.
    Zhang, Z., Provis, J. L., Reid, A., & Wang, H., Geopolymer foam concrete: An emerging material for sustainable construction, Construction and Building Materials, Vol. 56, pp. 113–127, 2014.
    王俊文,混凝土受高溫而強度折減之分析,國立雲林科技大學營建工程所,碩士論文,2000。
    王弟文,下水污泥焚化灰製造發泡輕質混凝土之研究,國立中央大學環境工程研究所,碩士論文,2001,桃園市,取自https://hdl.handle.net/11296/smatv5。
    呂勇,泡沫混凝土在建築工程中的應用,黑龍江科技信息,2009。
    呂嘉敏,混凝程序去除高科技產業廢水中非晶形二氧化矽之特性研究,朝陽科技大學環境工程與管理系,2003,宜蘭市,取自https://hdl.handle.net/11296/bwsupk。
    吳怡葶,鹼活化脫硫渣產製發泡砂漿板之性能與環境特性,國立高雄科技大學土木工程系土木工程與防災科技碩士班,碩士論文,2018。
    吳明富,還原碴-高爐石作為混合膠結材料之應用,國立中央大學土木工程學系,碩士論文,2013。
    李宜桃,鹼活化還原碴漿體收縮及抑制方法之研究,國立中央大學土木工程研究所,碩士論文,2003。
    林俊達,煉鋼爐渣蒸壓產製氣泡混凝土之特性研究,國立成功大學環境工程學系,碩士論文,2011。
    林岳凱,鹼活化轉爐石產製工程材料之研究,國立成功大學環境工程學系,碩士論文,2016。
    范雅茱,微結構及厚度對發泡無機聚合物工程性質之影響,國立成功大學土木工程研究所,碩士論文,2010。
    姚志廷,隔熱建材節能效益及綠建材基準研擬之研究,內政部建築研究所自行研究報告,2015。
    高健章,輕質混凝土在國內發展之研究,內政部建築研究所籌備處專題研究計畫成果報告,1993。
    黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,第三十二期,第55~59頁,1984。
    黃慶慶,鹼活化電弧爐還原碴製作混凝土可行性研究,國立中央大學土木工程學系,碩士論文,2008。
    陳凱勛,無細輕質混凝土磚耐火性能之探討,國立中興大學土木工程學系研究所,碩士論文,2004。
    陳協揚,包裹輕質骨材混凝土之力學性質,國立成功大學土木工程研究所,碩士論文,2002。
    陳豪吉、林建國,無細輕質骨材混凝土性質之研究,第五屆結構工程研討會,第531~539頁,2000。
    張復盛、許伯良,(2014),他山之石國外爐石/碴之應用,中國礦治工程學會。
    張雲鵬、張旭、李瑞麗,國內外鋼鐵企業鋼碴資源利用及技術新進展,江蘇冶金,第35卷,第六期,第4~6頁,2007。
    張高僑,鈣系爐渣封存二氧化碳行為之研究,國立成功大學環境工程學系,碩士論文,2008。
    曾建民、崔紅岩、向華,鋼碴處理技術進展,江蘇冶金,第38卷,第六期,2008。
    楊志強,淺議綠色混凝土的「綠色」內涵,技師期刊,第62卷,第55~60頁,2013。
    楊貫一,爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練, 第17卷,第一期,第31~46頁,1992。
    經濟部工業局,電弧爐煉鋼還原碴資源化應用技術手冊,2001。
    經濟部工業局,電弧爐還原碴安定化技術手冊,2017。
    蔡和生,鹼活化還原碴砂漿之工程與環境特性研究,國立成功大學環境工程學系,碩士論文,2016。
    蔡宜芬,泡沫無機聚合物材質與微結構對其隔音性能之數值分析,國立成功大學土木工程研究所,碩士論文,2012。
    劉國忠,煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期,十月號,第117~118頁,2001。
    蕭遠智,鹼活化電弧爐還原碴之水化反應特性,國立中央大學土木工程研究所,碩士論文,2002。
    蘇茂豐、陳立,電弧爐煉鋼爐渣之資源化現況與未來展望,工業污染防治,第93卷,第27~51頁,2005。
    蘇鈺荃,電弧爐渣重金屬溶出特性及作為級配材料之可行性研究,國立成功大學環境工程學系,碩士論文,2011。

    下載圖示 校內:2025-01-15公開
    校外:2025-01-15公開
    QR CODE