簡易檢索 / 詳目顯示

研究生: 周蔚
Zhou, Wei
論文名稱: 結合MANOVA與模糊綜合評判之「土家織錦」紋樣特徵要素意向喜好度研究
The Research on Imagery and Preference for Features of “Tujia brocade” Based on MANOVA and Fuzzy Comprehensive Evaluation
指導教授: 謝孟達
Shieh, Meng-Dar
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 71
中文關鍵詞: 「土家織錦」感性工學多變量變異數分析模糊層級分析模糊綜合評判
外文關鍵詞: "Tujia Brocade", Kansei Engineering, multivariate variance analysis, fuzzy AHP, fuzzy comprehensive evaluation
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「土家織錦」,也被稱為「西蘭卡普」是中國四大織錦之一,是中國傳統織錦文化中的寶貴財富,被列入國家級非物質文化遺產保護名錄。其工藝精巧複雜,製作週期較長,具有很高的收藏價值。但是,近年來「土家織錦」在外來文化文化衝擊和機器化大生產的影響下,消費市場狹窄,傳統的「土家織錦」產品越來越難跟上消費者的審美潮流。如果可以瞭解消費者對於「土家織錦」紋樣的意象喜好心理感受,便可以幫助設計師、藝術創作者及生產廠家更加瞭解消費者的心理,提高設計作品與市場之間的聯結度。「土家織錦」便能更快適應現代市場的審美,達到高效量產,提高市場競爭力,完成傳統產業的轉型。
    本研究首先通過查閱文獻整理出最具有代表性的9份紋樣樣本和20個意象形容詞語彙用以編制「土家織錦」紋樣意象喜好度問卷。同時,邀請專家運用型態分析法,分析出「土家織錦」紋樣之五個特徵要素,以及不同特徵要素所包含的21個特徵要素類型。基於形態分析表格,對「土家織錦」特徵元素進行模糊層級分析後發現:中心紋樣類型 (Feature C)的模糊權重值最大,表示在五個特徵中最重要,第二位是框架類型 (Feature A),第三位是框架層級 (Feature B),第四位是中心紋樣佈局類型 (Feature D),模糊權重值最低的特徵是間隙紋樣類型 (Feature E)。同時,運用多變量變異數分析,分析出五個特徵元素及其對應的特徵類型所顯著影響的「土家織錦」紋樣形容詞意象語彙,並結合意象雷達圖直觀展現「土家織錦」紋樣關於五個特徵要素的形容詞意象偏好,幫助「土家織錦」紋樣設計師在針對不同特徵進行設計時可以充分考慮到消費者的心理感受及意象偏好,選擇適合的特徵類型進行整合設計,產出更加適合消費者審美的紋樣。由MANOVA分析結果可知,「土家織錦」紋樣的框架類型主要會對:「典雅的/豪邁的」,「整齊的/雜亂的」,「嚴肅的/活潑的」, 「幾何的/曲線的」和「柔和的/陽剛的」之意象產生顯著性影響;「土家織錦」紋樣的框架層級主要會對:「典雅的/豪邁的」,「傳統的/現代的」之意象產生顯著性影響;「土家織錦」紋樣的中心紋樣類型主要會對:「傳統的/現代的」,「地域的/普遍的」,「宗教的/世俗的」, 「典雅的/豪邁的」,「連續的/斷
    開的」和「嚴肅的/活潑的」 之意象產生顯著性影響;「土家織錦」紋樣的中心紋樣佈局類型主要會對:「裝飾的/樸素的」,「宗教的/世俗的」,「幾何的/曲線的」和「嚴肅的/活潑的」之意象產生顯著性影響;「土家織錦」紋樣間隙裝飾紋樣類型主要會對:「地域的/普遍的」,「豐富的/單一的」,「傳統的/現代的」, 「連續的/斷開的」和「典雅的/豪邁的」之意象產生顯著性影響。
    在實驗驗證階段共分為兩次驗證實驗。第一次驗證實驗邀請專家在67個樣本中選擇最具代表性8個樣本,分發問卷32份。將模糊綜合評判與問卷統計加總分析的結果進行對比後發現準確率為62.5%。樣本 5、樣本 6、樣本 7效果最佳 ( 誤差百分比 < 5%); 樣本 1、樣本 2 、樣本 3、樣本 4 效果次佳 ( 5% <誤差百分比 < 15%) ;樣本 8 的誤差率最大(42.297 % )。樣本 4的誤差較大,誤差出現可能是因為樣本灰度變化和明暗對比讓樣本增加了排列方向性,另外紋樣元素的疏密關係可能也可能導致喜好度預測的不準確性。因此,第二次驗證實驗中,研究者基於型態分析表選出高、中、低三個不同隸屬度的「土家織錦」特徵元素進行整合繪製,得出三個驗證樣本,結合模糊層級分析與模糊綜合評判分析,計算出三個驗證樣本之喜好度排序。整合三個驗證樣本製作喜好度問卷,共回收問卷95份,問卷的統計結果與模糊綜合評判得出的喜好度排序相一致( 準確率為100% )。通過計算誤差百分數,三個樣本依然存在一定誤差。探究誤差產生的原因可能是因為消費者對於三個樣本的喜好度極端值有不同感受;另外樣本特徵元素的疏密關係也可能產生實驗誤差。總體而言,從驗證樣本的實驗驗證結果來看,在考慮一定誤差的情況下,如果樣本本身的區別度足夠大時,可以為設計師提供一定的設計喜好度參考。
    本研究建立了「土家織錦」紋樣之五個特徵與意象喜好度之間的關聯,幫助設計師基於消費者不同的意象偏好篩選適合的特徵類型元素。這種方法可以幫助設計師和相關廠商更有針對性的設計「土家織錦」紋樣產品,更加貼近消費者的意象与喜好,設計出更符合市場需求的「土家織錦」紋樣產品。

    "Tujia Brocade" is one of the four famous brocades in China, and it is also known as "Xilankapu". "Tujia Brocade" has excellent art accomplishment and represented distinctive features that can carry forward the national culture and spirit deeply. However, the impact of foreign culture and large-scale machine-made production on "Tujia Brocade" have made the consumption market of "Tujia brocade" become narrow; The traditional "Tujia brocade" products are more and more difficult to keep up with the aesthetic trend of consumers. If the data of consumers’ images can be collected before commercialization, the commodity orientation that conformed to the specific crowds may improve the core competitiveness of "Tujia Brocade" products (Yuan, 2014). Once the image demands of consumers were satisfied, "Tujia Brocade" would have more opportunities to go through sales difficulties.
    The study designed the image questionnaires based on nine representative samples and 20 adjective images of "Tujia Brocade". Also, the morphological matrix was achieved through the focus group. The morphological matrix includes five features ("framework type"; "framework level"; "main pattern type"; "main pattern layout type"; "filling pattern type") and corresponding feature types of "Tujia Brocade". The weight values of the five features of "Tujia Brocade" were (0.258, 0.128, 0.440, 0.110, 0.063) through the fuzzy hierarchical analysis (FAHP). Then, the image of each feature type was calculated based on the multivariate analysis of variance (MANOVA). The image tendency of each feature type was showed clearly based on the image radar map; These radar maps can help designers fully consider the consumer's psychology to select suitable feature types. The results of MANOVA showed that five features of "Tujia Brocade" could have a significant influence on the 20 vocabulary images. For example, Feature A (framework type) of "Tujia Brocade" may influence the images of "elegant/heroic", "regular/wild", "serious/lively", "geometric/curvilinear", and "soft/masculine". The Feature B (framework level) of "Tujia Brocade" may influence the images of "elegant/heroic" and "traditional/contemporary". The Feature C (main pattern type) of "Tujia Brocade" may influence the images of "traditional/contemporary", "regional/public", "religious/secular", "elegant/heroic", "continuous/interruptible", and "serious/lively". The Feature D (main pattern layout type) of "Tujia Brocade" may influence the images of "decorative/simple", "religious/secular", "geometric/curvilinear", and "serious/lively". The Feature E (filling pattern type) of "Tujia Brocade" may influence the images of "regional/public", "abundant/single", "traditional/contemporary", "continuous/interruptible", and "elegant/heroic".
    There are two validation experiments in this study. In the first validation experiment, 8 representative samples were selected from 67 "Tujia Brocade" samples. There were 32 questionnaires were collected in the first validation experiment. The accuracy of the fuzzy comprehensive evaluation was 62.5%. The accuracy rates of sample 5, sample 6 and sample 7 is great (<5%). The accuracy rates of sample 1, sample 2, sample 3, and sample 4 are relatively great (5%< error rate <15%). Sample 8 has the largest error rate among the nine samples (42.297%). The difference between grayscale and lightness can construct the orientation of the arrangement of samples (sample 2; sample 4; sample 8). Also, the density of pattern elements may lead to an inaccurate prediction of preference. The second validation experiment selected three "Tujia Brocade" samples. These samples integrated feature types from the morphological matrix. There were 95 questionnaires were collected in the second validation experiment. The results of statistical verification were consistent with that of the fuzzy comprehensive evaluation of validation samples (100%). The error rates of the preference of second validation samples were 21.367% (Sample 1), 66.361% (Sample 2), 12.272% (sample 3) respectively because consumers may have different feelings about the extreme value of the three samples' preference and the density of the feature types can result in the errors.
    This study investigated the relationship between the images and the feature types of "Tujia Brocade". The research can provide references for designers and relevant manufacturers to understand consumers' preferences and help "Tujia Brocade" to update and renovate.

    摘要 i SUMMARY iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES xi CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivation 3 1.3 Research Purpose 5 1.4 Research Scope and Restrictions 5 1.5 Research Framework 5 CHAPTER 2 LITERATURE REVIEW 8 2.1 Tujia and "Tujia Brocade" 8 2.2 The Current Development of "Tujia Brocade” 9 2.3 The Characteristics of "Tujia Brocade” 9 2.3.1 The Framework types of "Tujia Brocade" 10 2.3.2 The Framework Level types of "Tujia Brocade" 10 2.3.3 The Pattern Types of "Tujia Brocade" 11 2.3.4 The Main Pattern Layout Type of "Tujia Brocade" 12 2.4 The Morphological Analysis 14 2.5 Likert Scale 15 2.6 Multivariate Analysis of Variance 16 2.7 Fuzzy Logic 17 2.8 Fuzzy AHP 18 2.9 Fuzzy Comprehensive Evaluation 19 2.10 Kansei Engineering 20 CHAPTER 3 RESEARCH METHODS 22 3.1 Morphological Analysis 22 3.2 Likert Scale 23 3.3 Multivariate Analysis of Variance 24 3.3.1 Wilks' Test 24 3.3.2 Effect Size 25 3.3.3 Step-down Analysis 26 3.4 Fuzzy Logic 26 3.5 Fuzzy AHP 28 3.5.1 The Analytic Hierarchy Process 28 3.5.2 Fuzzy AHP Process 30 3.6 Fuzzy Comprehensive Evaluation 31 3.7 Kansei Engineering 33 CHAPTER 4 RESEARCH PROCEDURE 34 4.1 "Tujia Brocade" Samples 34 4.2 "Tujia Brocade"Vocabulary Images 34 4.3 The Morphological Matrix of "Tujia Brocade" 35 4.4 The Multivariate Variance Analysis of "Tujia Brocade" Images 37 4.4.1 The Multivariate Variance Analysis of "Tujia Brocade" Framework Type 37 4.4.2 The Multivariate Variance Analysis of "Tujia Brocade" Framework Level 38 4.4.3 The Multivariate Variance Analysis of the Main Pattern Type of "Tujia Brocade" 39 4.4.4 The Multivariate Variance Analysis of the Main Pattern Layout Type of "Tujia Brocade" 41 4.4.5 The Multivariate Variance Analysis of the Filling Pattern Type of "Tujia Brocade" 42 4.4.6 The Image Radar Map of the Framework types of "Tujia Brocade" 44 4.4.7 The Image Quadrant of "Tujia Brocade" Framework Level 46 4.4.8 The Image Radar Map of the Main Pattern Type of "Tujia Brocade" 46 4.4.9 The Image Radar Map of the Main Pattern Layout Type of "Tujia Brocade" 47 4.4.10 The Image Radar Map of the Filling Pattern Types of "Tujia Brocade" 48 4.5 The Fuzzy Hierarchical Analysis of "Tujia Brocade" 50 4.5.1 The First Level Fuzzy Weights 50 4.5.2 The Second Level Fuzzy Weights 51 4.6 The Fuzzy Comprehensive Evaluation of "Tujia Brocade" 54 4.6.1 The First Validation Experiment 54 4.6.2 The Second Validation Experiment 57 CHAPTER 5 RESULTS AND DISCUSSION 60 5.1 The Morphological Analysis of "Tujia Brocade" 60 5.2 The Vocabulary Images of "Tujia Brocade" 60 5.2.1 The Multivariate Analysis of Variance of "Tujia Brocade" Five Features 60 5.2.2 The Image Radar of "Tujia Brocade" 61 5.3 The Preference Analysis of "Tujia Brocade" 61 5.3.1 The FAHP of "Tujia Brocade" Features 61 5.3.2 The Fuzzy Comprehensive Evaluation and Preference Validation of "Tujia Brocade" Feature Types 62 REFERENCES 64

    Andrić, J. M., & Lu, D. G. (2016). Risk assessment of bridges under multiple hazards in operation period. Safety Science, 83, 80–92. https://doi.org/10.1016/j.ssci.2015.11.001
    Ayağ, Z. (2005). A fuzzy AHP-based simulation approach to concept evaluation in a NPD environment. IIE transactions, 37(9), 827-842.
    Bagheri, M., & Shahroudi, A. (2018). Effect of opening architectural shapes on users’ emotion with Kansei method. Intelligent Buildings International, 10(2), 103-121.
    Belaziz, M., Bouras, A., & Brun, J. M. (2000). Morphological analysis for product design. Computer-Aided Design, 32(5-6), 377-388.
    Bone, P. F. (1995). Word-of-Mouth Effects on Short-term and Long-term Product Judgments. Journal of Business Research, 32(3), 213–223.
    Cheng, C. H. (1997). Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343–350. https://doi.org/10.1016/S0377-2217(96)00026-4
    Cheng, X. F., Yang, J. Q., Jiang, L. J. & Hu, A. L. (2019), Interpreting and semantically describing Chinese traditional brocade: Xilankapu. The Electronic Library, 37(3), 474-489.
    Chow, W., Shieh, M. D., & Chen, C. N. (2019). Explore the Image Perception of “Tujia Brocade” based on the Tujia Cultural and Ecological Environment. Ekoloji, 28(107), 1963-1968.
    Chow, W., Shieh, M. D., & Lu, P. (2019). The Changes of Tourism Cultural and Creative Products in the Future: A Study on the Consumer Preference of Intangible Cultural Heritage Products—Taking “Tujia Brocade” as an Example. 2019 International Association of Societies of Design Research Conference, IASDR 2019, 27.
    Cobos-Guzman, S., Verdú, E., Herrera-Viedma, E., & Crespo, R. G. (2020). Fuzzy logic expert system for selecting robotic hands using kinematic parameters. Journal of Ambient Intelligence and Humanized Computing, 11(4), 1553-1564.
    Dong, C., & Bi, K. (2020). A low-carbon evaluation method for manufacturing products based on fuzzy mathematics. Systems Science & Control Engineering, 8(1), 153-161.
    Feng, C, H., Huang, S., & Bai, G, Z. (2020). A group decision making method for sustainable design using intuitionistic fuzzy preference relations in the conceptual design stage. Journal of Cleaner Production, 243, 1-13. https://doi.org/10.1016/j.jclepro.2019.118640
    Gang, Z., Jun, L., Shan, L., Zhuoran, L., Tao, H., & Hui, Z. (2017). Research on Tujia nationality’s brocade three-dimensional character modeling and animation integration. 2017 6th International Conference on Industrial Technology and Management, ICITM 2017, 205–209. https://doi.org/10.1109/ICITM.2017.7917921
    Grohmann, B., Spangenberg, E. R., & Sprott, D. E. (2007). The influence of tactile input on the evaluation of retail product offerings. Journal of Retailing, 83(1983), 237–245. https://doi.org/10.1016/j.jretai.2006.09.001
    Guo, F., Liu, W. L., Cao, Y., Liu, F. T., & Li, M. L. (2016). Optimization design of a webpage based on Kansei engineering. Human Factors and Ergonomics in Manufacturing & Service Industries, 26(1), 110-126.
    Hamid, M., Ahmad, S., Haider, Z., & Rehman, S. (2017). Relationship between Working Capital Management and Profitability: A Case Study from Textile Sector of Pakistan. Available at SSRN 2907661.
    He, L., Zhang, N., & Yin, L. (2018). The evaluation for perceived quality of products based on text mining and fuzzy comprehensive evaluation. Electronic Commerce Research, 18(2), 277-289.
    Ho, P.Y., Chew, F. P., & Thock, K. P.(2017).Mother Tongue and Ethnic Identity: A Study of Independent Chinese Secondary School Students in Malaysia. Advanced Science Letters, Vol. 23(3), 16-17.
    Hsiao, S. W., & Ko, Y. (2013). International Journal of Industrial Ergonomics A study on bicycle appearance preference by using FCE and FAHP. International Journal of Industrial Ergonomics, 43(4), 264–273. https://doi.org/10.1016/j.ergon.2013.04.003
    Hsiao, S. W., Hsiao, Y. T., Chen, S. K., Hsu, C. F., Lee, C. H., & Chiang, Y. H. (2016). An ergonomic study of visual optimization by light color managements. Color Research & Application, 41(1), 72-84.
    Hsiao, S. W., & Liu, E. (2004). A neurofuzzy-evolutionary approach for product design. Integrated Computer-Aided Engineering, 11(4), 323-338.
    Hsieh, C. H., & Chen, S. H. (1999). A model and algorithm of fuzzy product positioning. Information sciences, 121(1-2), 61-82.
    Huang, C. F., Lian, Y. S., Nien, W. P., & Chieng, W. H. (2016). Analyzing the perception of Chinese melodic imagery and its application to automated composition. Multimedia Tools and Applications, 75(13), 7631-7654.
    Huang, H., & Lai, H. H. (2008). Factors influencing the usability of icons in the LCD touchscreen. Displays, 29(4), 339-344.
    Huang, G. Q., & Mak, K. L. (1999). Web-based morphological charts for concept design in collaborative product development. Journal of Intelligent Manufacturing, 10(3-4), 267-278.
    Huberty, C. J. (1994). Applied discriminant analysis. New York: Wiley.
    Jindo, T., Hirasago, K., & Nagamachi, M. (1995). Development of a design support system for office chairs using 3-D graphics. International Journal of Industrial Ergonomics, 15(1), 49-62.
    Jindo, T., & Hirasago, K. (1997). Application studies to car interior of Kansei engineering. International journal of industrial ergonomics, 19(2), 105-114.
    Jun, L. (2011). Digital-protection of Tujia minority brocade heritage [J]. Journal of Jinan University (Natural Science & Medicine Edition), 32(5), 468-472.
    Kahraman, C., Ertay, T., & Büyüközkan, G. (2006). A fuzzy optimization model for QFD planning process using analytic network approach. European journal of operational research, 171(2), 390-411.
    Khalaj, J., & Pedgley, O. (2014). Comparison of semantic intent and realization in product design: A study on high-end furniture impressions. International Journal of Design, 8(3), 79-96.
    Kwong, C. K., & Bai, H. (2002). A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. Journal of intelligent manufacturing, 13(5), 367-377.
    Lai, H. H., Lin, Y. C., & Yeh, C. H. (2005). Form design of product image using grey relational analysis and neural network models. Computers & Operations Research, 32(10), 2689-2711.
    Lee, H., Seol, H., Min, H., & Geum, Y. (2017). The identification of new service opportunities: a case-based morphological analysis. Service Business, 11(1), 191-206.
    Liu, A., Liu, H., Xiao, Y., Tsai, S. B., & Lu, H. (2018). An empirical study on design partner selection in green product collaboration design. Sustainability, 10(1), 1-21.
    Lidón, I., Rebollar, R., Gil‐Pérez, I., Martín, J., & Vicente‐Villardón, J. L. (2018). The influence the image of the product shown on food packaging labels has on product perception during tasting: Effects and gender differences. Packaging Technology and Science, 31(10), 689-697.
    Liu, H. T. (2013). An integrated fuzzy decision approach for product design and evaluation. Journal of Intelligent & Fuzzy Systems, 25(3), 709-721.
    Mistarihi, M. Z., Okour, R. A., & Mumani, A. A. (2020). An integration of a QFD model with Fuzzy-ANP approach for determining the importance weights for engineering characteristics of the proposed wheelchair design. Applied Soft Computing Journal, 90, 1-12. https://doi.org/10.1016/j.asoc.2020.106136
    Mohanty, B. K., & Aouni, B. (2010). Product selection in Internet business: A fuzzy approach. International Transactions in Operational Research, 17(3), 317-331.
    Nagamachi, M. (2002). Kansei engineering as a powerful consumer-oriented technology for product development. Applied ergonomics, 33(3), 289-294.
    Neira-Rodado, D., Ortíz-Barrios, M., la Hoz-Escorcia, D., Paggetti, C., Noffrini, L., & Fratea, N. (2020). Smart product design process through the implementation of a fuzzy kano-AHP-DEMATEL-QFD approach. Applied Sciences, 10(5), 1792.
    Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York.
    Sezhian, M. V. (2011). Performance Measurement in a Public Sector Passenger Bus Transport Company Using Fuzzy Topsis, Fuzzy Ahp and Anova – a Case Study. International Journal of Engineering Science and Technology, 3(2), 1046–1059.
    Shi, C. & L. M. Zhang (2018). "Study on Tujia Brocade Tourism Product Development." Journal of Sichuan Tourism University(05): 86-92.
    Shieh, M. D., & Yang, C. C. (2008). Classification model for product form design using fuzzy support vector machines. Computers & Industrial Engineering, 55(1), 150-164.
    Tabachnick, B. G., & Fidell L. S. (2006). Using multivariate statistics (5th Ed.). Boston, MA: Allyn and Bacon.
    Tian, X. (2019). Decoration Foundation and Decoration Design(pp. 9-10). Taipei City, Taiwan, ROC: Songye Culture.
    Vashist, D. (2018). Effect of product involvement and brand prominence on advergamers’ brand recall and brand attitude in an emerging market context. Asia Pacific Journal of Marketing and Logistics, 30(1), 43-61.
    Vromans, L., Doyle, G., Petak-Opel, S., Rödiger, A., Röttgermann, M., Schlüssel, E., & Stetter, E. (2013). Shaping medicinal product information: a before and after study exploring physicians’ perspectives on the summary of product characteristics. BMJ open, 3(8), 1-9.
    Weng, J. T., & Run, E. C. De. (2013). Consumers ’ personal values and sales promotion preferences effect on behavioural intention and purchase satisfaction for consumer product. Asia Pacific Journal of Marketing and Logistics, 70–101. https://doi.org/10.1108/13555851311290948
    Wu, Y., Zhou, F., & Kong, J. (2020). Innovative design approach for product design based on TRIZ, AD, fuzzy and Grey relational analysis. Computers and Industrial Engineering, 140(January), 106276. https://doi.org/10.1016/j.cie.2020.106276
    Wu, M. C., Lo, Y. F., & Hsu, S. H. (2008). A fuzzy CBR technique for generating product ideas. Expert Systems with Applications, 34(1), 530-540.
    Xi, X., & Qin, Q. (2013). Product quality evaluation system based on AHP fuzzy comprehensive evaluation. Journal of Industrial Engineering and Management, 6(1 LISS 2012), 356–366. https://doi.org/10.3926/jiem.685
    Xue, L., Yi, X., & Zhang, Y. (2020). Research on optimized product image design integrated decision system based on Kansei engineering. Applied Sciences (Switzerland), 10(4), 1-19. https://doi.org/10.3390/app10041198
    Yang, D., & Mak, C. M. (2017). An assessment model of classroom acoustical environment based on fuzzy comprehensive evaluation method. Applied Acoustics, 127, 292–296. https://doi.org/10.1016/j.apacoust.2017.06.022
    Yu, H., Peng, G., & Liu, W. (2011). A practical method for measuring product maintainability in a virtual environment. Assembly Automation, 31(1), 53-61.
    Zeng, Y. & Zhang Z. F. (2018). Study on the Application of Xiangxi Tujia Brocade in the Design of Homestay. Furniture & Interior Design, (09), 94-95.
    Zhao, G., Zan, H., Di, B., Zhu, W., & Yu, Y. (2018). Research on Virtual Reconstruction Technology of Tujia Brocade Handcrafts. 3D Research, 9(4), 1–14. https://doi.org/10.1007/s13319-018-0206-7
    Zhai, J., Yuan, C., Chen, Y., & Li, J. (2011). Knowledge modeling and semantic retrieval of product data based on fuzzy ontology and sparql. Advanced Science Letters, 4(4-5), 1855-1859.
    Zheng, Z. (2018). Application of Visual Effect of Tujia Brocade Pattern in Modern Packaging. Packaging Engineering, 39(10), 64-68.
    Zhou, R., & Chan, A. H. (2017). Using a fuzzy comprehensive evaluation method to determine product usability: A proposed theoretical framework. Work, 56(1), 9-19.
    Zhou, Q., & He, L. (2019). Research on customer satisfaction evaluation method for individualized customized products. The International Journal of Advanced Manufacturing Technology, 104(9-12), 3229-3238.
    Zhu, Z., Cao, H., & Li, B. (2017). Research on logo design and evaluation of youth education brands based on visual representation. Journal of Product and Brand Management, 26(7), 722–733. https://doi.org/10.1108/JPBM-08-2016-1287
    鄧美珍、胡文娟(2008). 土家族織錦文化符號及其裝飾藝術特徵初探. 長沙大學學報,22(6),116-117 。[Deng, M. Z., & Hu, W. J. (2008).Tujia Brocade cultural symbols and decorative art characteristics. Journal of Changsha University, 22(6), 116-117.]
    韓玉婷、韓帆(2015). 湘西土家族織錦圖案在現代設計中的運用研究. 貴州民族研究,36(8),99-102 。[Han, Y. T., & Han, F.(2015). Study on the Application of Western Hunan Tujia Brocade pattern in modern Design. Guizhou Ethnic Studies, 36(8), 99-102.]
    黃柏權(2006). 土家族非物質文化遺產現狀及保護對策. 湖北民族學院學報(哲學社會科學版),24(2),44-51 。[Huang, B. Q.(2006). Current situation and Protection Countermeasures of Tujia Intangible Cultural Heritage. Journal of Hubei Institute for Nationalities, 24(2), 44-51.]
    李燁鑫、朱起德(2016). 文化生態學視域下土家織錦的發展困境與對策研究. 長江師範學院學報,32(4),31-33 。[Li, Y. X., & Zhu, Q. D.(2016). Research on the Development Dilemma and Countermeasures of Tujia Brocade from the perspective of cultural ecology. Journal of Changjiang Normal University, 32(4), 31-33.]
    劉京(2018).西蘭卡普大蛇花紋樣的符號化解析與設計研究.西安工業大學藝術研究所。[Liu, J. (2018). The study on symbolization analysis and design of Xilankapu serpent pattern. Xi 'an Technology University, Xi 'an, China.]
    冉红芳(2008).试论土家织锦的继承与创新.長江師範學院學報,24(1),86-89。[Ran, H. F. (2008). The Inheritance of Brocade of Tujia Nationality and the Innovation. Journal of Changjiang Normal University, 24(1), 86-89.]
    任雄(2015). 傳統土家織錦紋樣解析. 武漢紡織大學藝術設計研究所。[Ren, X. (2015). The analysis of traditional Tujia Brocade patterns. Institute of Art design. Wuhan Textile University, Wuhan, China.]
    邵樹清(1990). 土家族紡織歷史及其織錦風格. 中南民族學院學報,1990(1),42-44。[Shao, S. Q. (1990).Tujia Textile History and Brocade style. Journal of Central South Nationality Institute, 1990(1), 42-44.]
    向龍、彭華(2002). 土家族的傳統工藝西蘭卡普淺析. 零陵學院學報,23(4),116-117 。[Xiang, L., & Peng, H.(2002). Analyse TuJia Nationality Traditional Craft —"Xi LanKa Pu"(a kind of Tu Jia cloth). Journal of Lingling University, 23(4), 116-117.]
    辛藝華、羅彬(2001). 土家織錦的審美特徵. 華中師範大學學報,40(3),72-73 。[Xin, Y. H., & Luo, B. (2001).The aesthetic characteristics of Tujia Brocade. Journal of Central China Normal University University, 40(3), 72-73.]
    袁田(2014). 流行色在土家織錦旅遊產品中的運用——以服飾品為例. 美術文獻,000(006),111。[Yuan, T.(2014). The application of popular colors in Tujia Brocade Tourism products -- Taking clothing as an example. Art Literature, 000(006), 111.]

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE