簡易檢索 / 詳目顯示

研究生: 林敏鈺
Lin, Min-Yu
論文名稱: 利用即時與非即時X光繞射觀察硫化鐵礦物長晶路徑之研究
Investigation on crystal Growth Pathways of Iron Sulfide Minerals by In-situ and Ex-situ X-ray Diffraction
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 硫化鐵礦物長晶過程即時與非即時同步輻射X光繞射
外文關鍵詞: Iron Sulfide Minerals, Crystal Growth, In-situ and Ex-situ X-ray Diffraction
相關次數: 點閱:90下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鐵礦物常見的包括四方硫鐵礦 (mackinawite)、硫複鐵礦 (greigite) 以及黃鐵礦 (pyrite) 等,上述硫化鐵礦物本身的獨特性除了在材料領域上有所應用外,它們的相轉變序列也於古環境以及古地磁具有指標性,在合成實驗中指出相轉變路徑以四方硫鐵礦 → 硫複鐵礦 → 黃鐵礦之序列最為普遍接受,發生的條件是硫化氫等多硫化物或者氧氣做為氧化劑存在時,目前文獻提出硫化氫以及氧氣都具有促使相轉變發生之能力,然而若同時存在此兩種不同氧化劑,硫化鐵礦物是否有優先使用的氧化劑以及相轉變是否皆會以硫複鐵礦為中間相;黃鐵礦為最終產物之序列發生等相關研究還未被詳細探討,因此本研究先合成出相轉變序列之前驅物:奈米晶粒硫鐵礦 (nanocrystalline FeS),配置鐵硫莫耳數比為3:4、1:1以及4:3之溶液分別代表“硫多”以及“硫少”之條件,再藉由改變pH值至酸性而產生去硫化氫,並分別在厭氧和微氧環境進行實驗,觀察硫化氫或者環境中氧氣有無對於其硫化鐵礦物相轉變序列之影響;以及鐵硫莫耳數和溫度如何影響相轉變之速率,另外利用即時X光繞射分析其相轉變過程中連續變化。結果顯示:硫化氫含量充足系統中會以黃鐵礦成核之反應優先,因此硫複鐵礦在此系統中其形成速率較慢;環境中氧氣或者水中溶氧對於相轉變之影響也只於當減少硫化氫含量之條件中才得以觀察到,因即時實驗之手法是利用針筒吸取非即時實驗中配置之溶液,導致即時實驗中硫化氫含量遠小於非即時實驗條件,並且有效抑制了黃鐵礦成核,因此四方硫鐵礦 → 硫複鐵礦 → (黃鐵礦) 之序列只出現在即時實驗之厭氧環境中80oC和100oC下;若在無硫化氫系統中,則將鐵莫耳數提高可促使硫複鐵礦出現,在無硫化氫系統中提高氧氣濃度則出現針鐵礦。

    Iron sulfide minerals spread wildly in sediments, including mackinawite, greigite and pyrite etc. Besides their brilliant properties in the field of material applications, the transformation sequence also plays a critical role on paleoenvironment and paleomagnetism. Most studies indicated the commonly known transformation pathway is mackinawite → greigite → pyrite and oxidants embarking transformation include hydrogen sulfide, polysulfide and oxygen. However, previous studies focused on single oxidant in solution system, the contribution of each one and whether transformation sequence always present as the intermediate phase: greigte; final phase: pyrite with existing two or more oxidants in system is less concerned and discussed. Therefore, co-precipitation was used to synthesize precursor (nanocrystalline FeS) first and prepared solution with three Fe/S values, representing “rich-sulfide” as well as “less-sulfide” conditions to observe the rate of transformation. Besides Fe/S value, oxygen was took into account by conducting experiment in anaerobic and aerobic environment, then altering pH to create the H2S system in each Fe/S condition to understand the contribution of hydrogen sulfide and oxygen to transformation. Moreover, in-situ X-ray diffraction analysis was used to obtain continuous transformation process. This study shows: the formation of greigite and the influence of oxygen in environment are limited in the abundant-H2S system where nucleation of pyrite became primary reaction. Due to synthesis method for in-situ experiment, only dropping a little amount of initial solution into capillary resulting in less amount of hydrogen sulfide in capillary, forbidding pyrite from nucleating in solution, therefore, the sequence of mackinawite → greigite → pyrite only can be observed at 80oC and 100oC from in-situ experiment. Without hydrogen sulfide and oxygen as oxidant, the formation of greigite by enhancing the molar value of iron is possible; however, goethite appeared instead not greigite as increasing oxygen concentration in environment.

    中文摘要 I Extend Abstract II 致謝 VI 圖目錄 X 表目錄 XII 第一章、緒論 1 第二章、背景資料 3 2.1礦物介紹 3 2.1.1 硫化鐵礦物 3 四方硫鐵礦 3 等軸硫化鐵 4 硫複鐵礦 4 黃鐵礦 5 白鐵礦 5 磁黃鐵礦 6 隕硫鐵礦 7 2.1.2 鐵氧礦物 8 針鐵礦 8 2.2硫化鐵礦物之形成條件與相轉變過程 9 2.2.1 沉積物中硫化鐵礦物形成 9 2.2.2 硫化鐵相變化序列文獻整理 10 2.3硫化鐵礦物合成方法 11 水熱法 11 共沉澱法 11 2.4 合成硫化鐵礦物長晶路徑之文獻回顧 11 第三章、實驗步驟與儀器 14 3.1實驗流程 14 3.1.1非即時實驗 14 3.1.1.1 硫化氫有無以及環境中氧氣濃度之調整 14 15 3.1.1.2 鐵硫莫耳數之配置 15 3.1.2即時實驗 16 3.2 實驗儀器 17 厭氧手套箱 17 真空冷凍乾燥機 17 3.3 分析儀器 18 X光粉末繞射儀 18 同步輻射光束線 18 高解析分析電子顯微鏡 19 擬合軟體 19 第一原理計算 19 第四章、結果 20 4.1 反應之前驅物 22 4.2 厭氧環境 24 4.2.1 無硫化氫系統 24 4.2.1.1 非即時X光繞射結果 24 4.2.1.2 電子顯微鏡分析 27 4.2.1.3 即時X光繞射結果 30 4.2.2 含硫化氫系統 32 4.2.2.1 非即時X光繞射結果 32 4.2.2.2 電子顯微鏡分析 37 4.2.2.3 即時X光繞射結果 42 4.3 微氧環境 48 4.3.1 無硫化氫系統 48 4.3.1.1 非即時X光繞射結果 48 4.3.1.2 即時X光繞射結果 50 4.3.2 含硫化氫系統 51 4.3.2.1 非即時X光繞射結果 51 4.3.2.2 即時X光繞射結果 53 4.3.3 pH值與Fe(II) 氧化速率之關係 54 4.3.4 即時與非即時實驗出現礦物相不同之原因 58 第五章、討論 62 5.1 奈米晶粒硫鐵礦之討論 62 5.1.1 (001) 繞射峰其XRD圖之特徵 62 5.1.2 pH值對於 (001) 繞射峰之影響 63 5.1.3 莫耳數對於 (001) 繞射峰之影響 65 5.1.4 溫度對於 (001) 繞射峰之影響 66 5.2 莫耳數對於相轉變序列影響 68 5.2.1 無硫化氫系統 68 5.2.2 含硫化氫系統 68 5.3 微氧對於相轉變序列之影響 69 5.3.1 無硫化氫系統 69 5.3.2 含硫化氫系統 70 5.4 不同條件下之反應機制 71 5.4.1 無硫化氫系統 71 5.4.2 含硫化氫系統 72 5.4.3 硫化氫有無對於相轉變之影響 76 5.5 利用能量觀點輔助硫化鐵礦物形成機制 78 5.5.1 無硫化氫系統 78 5.5.2 含硫化氫系統 78 5.6 對應於不同的地質環境 80 第六章、結論 82 參考文獻 84 附錄一 91

    Bai, P., Zheng, S., Chen, C., & Zhao, H. Investigation of the Iron Sulfide Phase Transformation in Nanoscale. Crystal Growth Design, 14, 4295-4302, 2014.
    Barber-Zucker, S., & Zarivach, R. A look into the biochemistry of magnetosome biosynthesis in magnetotactic bacteria. ACS Chemical Biology, 12, 13-22, 2016.
    Bazylinski, D. A., Frankel, R. B., Heywood, B. R., Mann, S., King, J. W., Donaghay, P. L., & Hanson, A. K. Controlled Biomineralization of Magnetite (Fe (inf3) O (inf4)) and greigite (Fe (inf3) S (inf4)) in a Magnetotactic Bacterium. Applied and Environmental Microbiology, 61(9), 3232-3239, 1995.
    Bennett, M. E., & McSween, H. Y. Shock features in iron‐nickel metal and troilite of L‐group ordinary chondrites. Meteoritics & Planetary Science, 31(2), 255-264, 1996.
    Benning, L., & Barnes, H. In situ determination of the stability of iron monosulphides and kinetics of pyrite formation. Mineralogical Magazine, 62, 151-152, 1998.
    Benning, L. G., Wilkin, R. T., & Barnes, H. L. Reaction pathways in the Fe–S system below 100oC. Chemical Geology, 167, 25-51, 2000.
    Berner, R. A. Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. The Journal of Geology, 293-306, 1964.
    Berner, R. A. Sedimentary pyrite formation. American Journal of Science, 268(1), 1-23, 1970.
    Berner, R. A. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48(4), 605-615, 1984.
    Berner, R. A., Baldwin, T., & Holdren Jr, G. R. Authigenic iron sulfides as paleosalinity indicators. Journal of Sedimentary Research, 49(4), 1345-1350, 1979.
    Blanchet, C. L., Thouveny, N., & Vidal, L. Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography, 24(2), 1-15, 2009.
    Bourdoiseau, J. A. e., Jeannin, M., C´ eline R´emazeilles, Sabota, R. E., & Refaita, P. The transformation of mackinawite into greigite studied by Raman spectroscopy. Journal of Raman Spectroscopy, 42, 496-504, 2011.
    Boursiquot, S., Mullet, M., Abdelmoula, M., Génin, J. M., & Ehrhardt, J. J. The dry oxidation of tetragonal FeS 1-x mackinawite. Physics and Chemistry of Minerals, 28(9), 600-611, 2001.
    Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M., & Hinrichs, K. U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science, 344(6186), 889-891, 2014.
    Butler, I. B., & Rickard, D. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta, 64(15), 2665-2672, 2000.
    Cahill, C. L., Benning, L. G., Barnes, H. L., & Parise, J. B. In situ time-resolved X-ray diffraction of iron sulfides during hydrothermal pyrite growth. Chemical Geology, 167, 53-63, 2000.
    Canfield, D. E., & Berner, R. A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimica et Cosmochimica Acta, 51(3), 645-659, 1987.
    Chang, L., Vasiliev, I., van Baak, C., Krijgsman, W., Dekkers, M. J., Roberts, A. P., Gerald, J. D. F., van Hoesel, A., & Winklhofer, M. Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: a lesson from the Messinian Black Sea. Geochemistry, Geophysics, Geosystems, 15(9), 3612-3627, 2014.
    Chang, Y. S., Savitha, S., Sadhasivam, S., Hsu, C.-K., & Lin, F.-H. Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. Journal of Colloid and Interface Science, 363(1), 314-319, 2011.
    Cheng, D., Yuan, S., Liao, P., & Zhang, P. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Condition due to Production of Hydroxyl Radicals. American Chemical Society1 35, 1-35, 2016.
    Cornwell, J. C., & Morse, J. W. The characterization of iron sulfide minerals in anoxic marine sediments. Marine Chemistry, 22(2), 193-206, 1987.
    Csakberenyi-Malasics, D., Rodriguez-Blanco, J. D., Kis, V. K., Recnik, A., Benning, L. G., & Posfai, M. Structural properties and transformations of precipitated FeS. Chemical Geology, 294, 249-258, 2012.
    Cudennec, Y., & Lecerf, A. The transformation of ferrihydrite into goethite or hematite, revisited. Journal of Solid State Chemistry, 179(3), 716-722, 2006.
    Davison, W., Phillips, N., & Tabner, B. J. Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants. Aquatic Sciences, 61(1), 23-43. 1999.
    Fu, C., Bloemendal, J., Qiang, X., Hill, M. J., & An, Z. Occurrence of greigite in the Pliocene sediments of Lake Qinghai, China, and its paleoenvironmental and paleomagnetic implications. Geochemistry, Geophysics, Geosystems, 16(5), 1293-1306, 2015.
    Hámor, T. The occurrence and morphology of sedimentary pyrite. Acta Geol Hung, 37, 153-181, 1994.
    Harmandas, N., & Koutsoukos, P. The formation of iron (II) sulfides in aqueous solutions. Journal of Crystal Growth, 167(3-4), 719-724. 1996.
    Hayase, K., Otsuka, R., & Mariko, T. On the magnetic properties of natural pyrrhotites. Mineralogical Journal, 4(1), 41-56, 1963.
    Holmer, M., & Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology, 46(4), 431-451, 2001.
    Hunger, S., & Benning, L. G. Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochemical Transactions, 8, 1-20, 2007.
    Jiang, W. T., Horng, C. S., Roberts, A. P., & Peacor, D. R. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1), 1-12, 2001.
    Kao, S. J., Horng, C. S., Roberts, A. P., & Liu, K.-K. Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203(1), 153-168, 2004.
    Konhauser, K. O. Introduction to geomicrobiology, Blackwell Science Ltd,UK, 173, 2009.
    Krumbein, W., & Garrels, R. Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials. The Journal of Geology, 60(1) 1-33, 1952.
    Kuivila, K., Murray, J., Devol, A., & Novelli, P. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochimica et Cosmochimica Acta, 53(2), 409-416, 1989.
    Lan, Y., & Butler, E. C. Monitoring the transformation of mackinawite to greigite and pyrite on polymer supports. Applied Geochemistry, 50, 1-6, 2014.
    Lennie, A. R., Redfern, S. A. T., Champness, P. E., Stoddart, C. P., Schofield, P. F., & Vaughan1, D. J. Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. American Mineralogist, 82, 302-309, 1997.
    Li, T., Li, H., Wu, Z., Hao, H., Liu, J., Huang, T., Sun, H., Zhang, J., Zhang, H., & Guo, Z. Colloidal synthesis of greigite nanoplates with controlled lateral size for electrochemical applications. Nanoscale, 7(9), 4171-4178, 2015.
    Li, Y., Van Santen, R., & Weber, T. High-temperature FeS–FeS2 solid-state transitions: Reactions of solid mackinawite with gaseous H2S. Journal of Solid State Chemistry, 181(11), 3151-3162, 2008.
    Liu, S., Li, M., Li, S., Li, H., & Yan, L. Synthesis and adsorption/photocatalysis performance of pyrite FeS2. Applied Surface Science, 268, 213-217, 2013.
    Lottermoser, B. Mine Wastes,Springer, Berlin, 83-141, 2003.
    Luther, G. W. Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55(10), 2839-2849, 1991.
    Luther, G. W., Findlay, A. J., MacDonald, D. J., Owings, S. M., Hanson, T. E., Beinart, R. A., & Girguis, P. R. Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Frontiers in microbiology, 2, 1-9, 2011.
    Luther, G. W., Glazer, B., Ma, S., Trouwborst, R., Shultz, B. R., Druschel, G., & Kraiya, C. Iron and sulfur chemistry in a stratified lake: Evidence for iron-rich sulfide complexes. Aquatic Geochemistry, 9(2), 87-110, 2003.
    Medicis, R. Cubic FeS, a metastable iron sulfide. Science, 170(3963), 1191-1192, 1970.
    Moore, J. N., Ficklin, W. H., & Johns, C. Partitioning of arsenic and metals in reducing sulfidic sediments. Environmental Science & Technology, 22(4), 432-437. 1988.
    Morgan, B., & Lahav, O. The effect of pH on the kinetics of spontaneous Fe (II) oxidation by O 2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere, 68(11), 2080-2084, 2007.
    Morimoto, N., Gyobu, A., Mukaiyama, H., & Izawa, E. Crystallography and stability of pyrrhotites. Economic Geology, 70(4), 824-833, 1975.
    Mujuru, M., & Mutanga, S. S. Management and Mitigation of Acid Mine Drainage in South Africa: Input for Mineral Beneficiation in Africa, Africa Institute of South Africa, South Africa, 159-164, 2017.
    Murowchick, J. B., & Barnes, H. Formation of cubic FeS. American Mineralogist, 71(9-10), 1243-1246, 1986a.
    Murowchick, J. B., & Barnes, H. Marcasite precipitation from hydrothermal solutions. Geochimica et Cosmochimica Acta, 50(12), 2615-2629, 1986b.
    Nayar, K. Marcasite in Travancore lignite. Current Science, 15, 229, 1946.
    Ning, J., Zheng, Y., Brown, B., Young, D., & Nesic, S. Construction and Verification of Pourbaix Diagrams for Hydrogen Sulfide Corrosion of Mild Steel. Paper presented at the Corrosion 2015. 2015.
    Ohfuji, H., & Rickard, D. High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite. Earth and Planetary Science Letters, 241, 227-233, 2006.
    Paolella, A., George, C., Povia, M., Zhang, Y., Krahne, R., Gich, M., Genovese, A., Falqui, A., Longobardi, M., & Guardia, P. Charge transport and electrochemical properties of colloidal greigite (Fe3S4) nanoplatelets. Chemistry of Materials, 23(16), 3762-3768, 2011.
    Pham, A. N., & Waite, T. D. Oxygenation of Fe (II) in natural waters revisited: Kinetic modeling approaches, rate constant estimation and the importance of various reaction pathways. Geochimica et Cosmochimica Acta, 72(15), 3616-3630, (2008).
    Pósfai, M., Buseck, P. R., Bazylinski, D. A., & Frankel, R. B. Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science, 280(5365), 880-883, 1998.
    Pugh, C., Hossner, L., & Dixon, J. Oxidation rate of iron sulfides as affected by surface area, morphology, oxygen concentration, and autotrophic bacteria. Soil Science, 137(5), 309-314, 1984.
    Raiswell, R., & Berner, R. A. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285(8), 710-724, 1985.
    Raiswell, R., Buckley, F., Berner, R. A., & Anderson, T. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation. Journal of Sedimentary Research, 58(5), 812-819, 1988.
    Raiswell, R., & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. American Journal of Science, 298(3), 219-245, 1998.
    Rickard, D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 oC: The rate equation. Geochimica et Cosmochimica Acta, 61(1), 115-134, 1997.
    Rickard, D. The solubility of FeS. Geochimica et Cosmochimica Acta, 70(23), 5779-5789, 2006.
    Rickard, D., Griffith, A., Oldroyd, A., Butler, I. B., Lopez-Capel, E., Manning, D. A. C., & Apperley, D. C. The composition of nanoparticulate mackinawite,tetragonal iron(II) monosulfide. Chemical Geology, 235, 286-298, 2006.
    Rickard, D., & Luther, G. W. Chemistry of iron sulfides. Chemical reviews, 107(2), 514-562, 2007.
    Rickard, D., Schoonen, M. A., & Luther III, G. Chemistry of iron sulfides in sedimentary environments: ACS Publications, 169-193, 1995.
    Roberts, A. P., & Weaver, R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231(3), 263-277, 2005.
    Roberts, W. M. B., & Buchanan, A. S. The effects of Temperature, Pressure, and Oxygen on Copper and Iron Sulphides Synthesised in Aqueous Solution. Mineral. Deposita, 6, 23-33, 1971.
    Rowan, C. J., Roberts, A. P., & Broadbent, T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 277(1), 223-235, 2009.
    Roychoudhury, A. N., Kostka, J. E., & Van Cappellen, P. Pyritization: a palaeoenvironmental and redox proxy reevaluated. Estuarine, Coastal and Shelf Science, 57(5), 1183-1193, 2003.
    Sawlowicz, Z. Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau, 82(1), 148-156, 1993.
    Schieber, J. Oxidation of detrital pyrite as a cause for Marcasite Formation in marine lag deposits from the Devonian of the eastern US. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11), 1312-1326, 2007.
    Schieber, J. Encyclopedia of Geobiology , Springer, 486-502, 2011a.
    Schieber, J. Marcasite in black shales—a mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds. Journal of Sedimentary Research, 81(7), 447-458, 2011b.
    Schoonen, M. A. A., & Barnes, H. L. Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochimca et Cosmochimica Acta, 55, 3491-3504, 1991a.
    Schoonen, M. A. A., & Barnes, H. L. Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C. Geochimica et Cosmochimica Acta, 55, 1505-1514, 1991b.
    Schwertmann, U., & Murad, E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals, 31(4), 277-284, 1983.
    Scott, E. R. Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 46(5), 813-823, 1982.
    Shoesmith, D. W., Taylor, P., Bailey, M. G., & Owen, D. G. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21 C. Journal of the Electrochemical Society, 127(5), 1007-1015, 1980.
    Skinner, B., Grimaldi, F. S., & Erd, R. C. Greigite, Thio-Spinel of Iron-New Mineral. American Mineralogist, 49(5-6), 543-555. 1964.
    Smith, S. N., Brown, B., & Sun, W. Corrosion at higher H2S concentrations and moderate temperatures. Paper presented at the NACE International 2011 Corrosion Conference & Expo, 2011.
    Steinhagen, C., Harvey, T. B., Stolle, C. J., Harris, J., & Korgel, B. A. Pyrite nanocrystal solar cells: promising, or fool’s gold? The journal of physical chemistry letters, 3(17), 2352-2356, 2012.
    Steudel, R. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Industrial & engineering chemistry research, 35(4), 1417-1423. 1996.
    Suits, N. S., & Wilkin, R. T. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26(12), 1099-1102, 1998.
    Sweeney, R. E., & Kaplan, I. R. Pyrite Framboid Formation: Laboratory Synthesis and Marine Sediments. Economic Geology, 68, 618-634, 1973.
    Taylor, L., & Mao, H. A high-pressure polymorph of troilite, FeS. Science, 170(3960), 850-851, 1970.
    Theberge, S. M., & Luther III, G. W. Determination of the electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions. Aquatic Geochemistry, 3(3), 191-211, 1997.
    Villiers, J. P., & Liles, D. C. The crystal-structure and vacancy distribution in 6C pyrrhotite. American Mineralogist, 95(1), 148-152, 2010.
    Wang, H., & Salveson, I. A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1− x S (0≤ x≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions, 78(7-8), 547-567, 2005.
    Wang, Q., & Morse, J. W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology. Marine Chemistry, 52(2), 99-121, 1996.
    Wang, Y., Zhang, W., Liu, X., Li, G., & Liu, M. Formation of greigite under different climate conditions in the Yellow River delta. Science China Earth Sciences, 58(2), 300-308, 2015.
    Watson, J., Ellwood, D., Deng, Q., Mikhalovsky, S., Hayter, C., & Evans, J. Heavy metal adsorption on bacterially produced FeS. Minerals Engineering, 8(10), 1097-1108. 1995.
    Weisener, C., & Weber, P. Preferential oxidation of pyrite as a function of morphology and relict texture. New Zealand Journal of Geology and Geophysics, 53(2-3), 167-176. 2010.
    Wharton, M., Atkins, B., Charnockab, J., Livens, F., Pattrick, R., & Collison, D. An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Applied Geochemistry, 15(3), 347-354, 2000.
    Wignall, P. B., Newton, R., & Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3), 183-188, 2005.
    Wilkin, R., & Barnes, H. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2), 323-339, 1997.
    Wilkin, R. T., Arthur, M. A., & Dean, W. E. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth and Planetary Science Letters, 148(3), 517-525, 1997.
    Wilkin, R. T., Barnes, H. L., & Brantley, S. L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897-3912, 1996.
    Wolthers, M., Gaast, S. J. V. D., & Rickard, D. The structure of disordered mackinawite. American Mineralogist, 88, 2007-2015, 2003.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-01公開
    QR CODE