簡易檢索 / 詳目顯示

研究生: 許書愷
Hsu, Shu-Kai
論文名稱: 探討利用噴霧法於影印紙上製備微流體晶片
Fabrication of paper-based microfluidics by spray-on-printing-paper
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 紙基微流體噴灑影印紙葡萄糖
外文關鍵詞: paper-based microfluidics, printing paper, glucose detection, spray
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於紙基微流體裝置具有生物相容性、價格低廉、可生物降解、並且由毛細力驅動而無需外部幫浦的特點,因此在化學和生物檢測與分析,環境監測,食品安全等方面的應用受到了廣泛關注。現下製備紙基微流體裝置的方法繁多,如:paper cutting, screen printing , photolithography 等多種方法。本研究中,我們將透過噴灑方式製作紙基微流體裝置,首先使用影印紙,藉由列印機列印出流道圖案的紙張,再將其以疏水性材料進行噴灑,利用紙張上的碳粉作為遮罩使得溶液無法滲透,未被碳粉覆蓋處則會被滲透形成疏水區域,噴灑後去除多餘溶液,加熱乾燥並固化高分子後即可得到微流體裝置。實驗結果顯示,碳粉足夠緻密,因此能夠作為遮罩,進而限制疏水材料區域,經噴霧法製造紙基可形成完整的利用噴霧法得到的紙基晶片進行葡萄醣的檢測,與其他方法製備紙基微流體裝置相同,皆可得到一線性關係。

    In recent years, paper-based microfluidics has received great attention and been applied in many areas such as chemical and biological detection and analysis, environmental monitoring and food safety inspection. This is because paper-based microfluidics possesses many merits like fluid transport by capillarity without pump, availability, low cost, being biocompatible and biodegradable, pre-loading of reagent, incineration after usage, etc. Numerous methods were proposed and demonstrated to fabricate paper-based microfluidics such as paper cutting, wax printing, screen printing, embossing, photolithography, and so on. In this study, we proposed to fabricate paper-based microfluidics by spraying method. The major highlight is that, instead of using the filter paper, the printing paper which is much easily accessible and substantially low cost was tested. The processing parameters such as toner coverage, hydrophobic material for spray, heating, and so on were investigated. The results showed that the toner coverage was increased after printing, at least, three times. The commercially available wax spray could be used to create hydrophobic barrier to serve as the channel wall, however, the shelf life was only 30 mins. The diluted polydimethylsiloxane solution showed a better result by extending the shelf life to, at least, a month. The plasma treatment of the paper to increase its hydrophilicity might be an option if the paper was not placed in the ambient for certain time prior to usage. The glucose detection was conducted using the device as fabricated and a linear range between 1-10mM was obtained.

    中文摘要 I Extended Abstract II 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1.1前言 1 1.2研究動機與方法 1 第二章 文獻回顧 3 2.1紙基微流體 3 2.2製備紙基微流體 4 2.2.1 Handcrafted 7 2.2.2 Mask 11 2.2.3 Printing 14 2.2.4 Cutting/Shaping 19 2.2.5其他方法 21 2.3 Spraying 29 2.3.1 噴霧形成介紹 29 2.3.2 噴霧塗層 32 2.3.3 噴霧乾燥 34 2.4紙基微流體之檢測法 36 2.4.1 光度檢測法 36 2.4.2 化學發光法(Chemiluminescence) 37 2.4.3 螢光檢測法 37 2.4.4 電化學檢測法 38 2.5紙基微流體之應用 紙基微流體之應用 紙基微流體之應用 39 2.5.1 臨床檢測 39 2.5.2 環境監控 40 2.5.3 食安分析 41 第三章 實驗材料及方法 42 3.1實驗藥品與材料 42 3.2實驗儀器 48 3.3實驗步驟 57 3.3.1 使用撥水蠟製作紙基微流體裝置 57 3.3.2 使用PDMS製作紙基微流體裝置 58 3.3.3葡萄糖檢測應用 59 第四章 結果與討論 60 4.1 製作流程 60 4.1.1紙張選擇 61 4.1.2紙張測試 62 4.1.3溶劑選擇 66 4.2 噴霧實驗變數 68 4.2.1氧電漿處理與製程順序 72 4.2.2流道測試 75 4.3 PDMS噴霧實驗 77 4.3.1配製溶液 77 4.3.2使用PDMS溶液進行噴霧 79 4.3.3氧電漿處理與製程順序 83 4.3.4流道測試 85 4.3.5紙張保存性 85 4.3.6簡化實驗步驟 86 4.3.7觀察流動性質 87 4.3.8 紙條吸水測試 88 4.4 葡萄糖檢測 90 第五章 結論 93 第六章 未來工作與展望 94 第七章 參考文獻 95

    1. Bruzewicz, D.A., M. Reches, and G.M. Whitesides, Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Analytical chemistry, 2008. 80(9): p. 3387-3392.
    2. Iliescu, C., et al., A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics, 2012. 6(1): p. 016505.
    3. Stjernström, M. and J. Roeraade, Method for fabrication of microfluidic systems in glass. Journal of Micromechanics and Microengineering, 1998. 8(1): p. 33.
    4. Becker, H. and L.E. Locascio, Polymer microfluidic devices. Talanta, 2002. 56(2): p. 267-287.
    5. Schilling, K.M., et al., Fully enclosed microfluidic paper-based analytical devices. Analytical chemistry, 2012. 84(3): p. 1579-1585.
    6. Akyazi, T., L. Basabe-Desmonts, and F. Benito-Lopez, Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta, 2018. 1001: p. 1-17.
    7. Hansen, C.L., et al., A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proceedings of the National Academy of Sciences, 2002. 99(26): p. 16531-16536.
    8. Takayama, S., et al., Subcellular positioning of small molecules. Nature, 2001. 411(6841): p. 1016-1016.
    9. Bange, A., H.B. Halsall, and W.R. Heineman, Microfluidic immunosensor systems. Biosens Bioelectron, 2005. 20(12): p. 2488-503.
    10. Li, X., et al., Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces, 2010. 76(2): p. 564-70.
    11. Martinez, A.W., et al., Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angewandte Chemie, 2007. 119(8): p. 1340-1342.
    12. Sameenoi, Y., et al., One-step polymer screen-printing for microfluidic paper-based analytical device (muPAD) fabrication. Analyst, 2014. 139(24): p. 6580-8.
    13. Juang, Y.-J., P.-S. Chen, and Y. Wang, Rapid fabrication of microfluidic paper-based analytical devices by microembossing. Sensors and Actuators B: Chemical, 2019. 283: p. 87-92.
    14. Mathaweesansurn, A., et al., Simple and fast fabrication of microfluidic paper-based analytical device by contact stamping for multiple-point standard addition assay: Application to direct analysis of urinary creatinine. Talanta, 2020. 210: p. 120675.
    15. He, Y., et al., A low-cost and rapid microfluidic paper-based analytical device fabrication method: flash foam stamp lithography. RSC Adv., 2014. 4(109): p. 63860-63865.
    16. Carrilho, E., A.W. Martinez, and G.M. Whitesides, Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical chemistry, 2009. 81(16): p. 7091-7095.
    17. Zhao, Y., et al., Rapid and accurate detection of Escherichia coli O157: H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst, 2020. 145(8): p. 3106-3115.
    18. Wang, S., et al., Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron, 2012. 31(1): p. 212-8.
    19. Raj, N., V. Breedveld, and D.W. Hess, Flow control in fully enclosed microfluidics paper based analytical devices using plasma processes. Sensors and Actuators B: Chemical, 2020. 320: p. 128606.
    20. Fang, X., S. Wei, and J. Kong, Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays. Lab Chip, 2014. 14(5): p. 911-5.
    21. Zhu, J., et al., Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Analytical Methods, 2017. 9(43): p. 6186-6193.
    22. Thuo, M.M., et al., Fabrication of Low-Cost Paper-Based Microfluidic Devices by Embossing or Cut-and-Stack Methods. Chemistry of Materials, 2014. 26(14): p. 4230-4237.
    23. Yu, L. and Z.Z. Shi, Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm(R). Lab Chip, 2015. 15(7): p. 1642-5.
    24. de Tarso Garcia, P., et al., A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv., 2014. 4(71): p. 37637-37644.
    25. Gutiérrez, A., et al., Main lipophilic extractives in different paper pulp types can be removed using the laccase–mediator system. Applied microbiology and biotechnology, 2006. 72(4): p. 845-851.
    26. Kong, F. and Y.F. Hu, Biomolecule immobilization techniques for bioactive paper fabrication. Analytical and bioanalytical chemistry, 2012. 403(1): p. 7-13.
    27. Guo, Y.-h., et al., Properties and paper sizing application of waterborne polyurethane emulsions synthesized with TDI and IPDI. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013. 427: p. 53-61.
    28. Cate, D.M., et al., Recent developments in paper-based microfluidic devices. Anal Chem, 2015. 87(1): p. 19-41.
    29. Lu, Y., et al., Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 2009. 30(9): p. 1497-500.
    30. Zhang, Y., et al., Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal Chem, 2014. 86(4): p. 2005-12.
    31. Dungchai, W., O. Chailapakul, and C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 2011. 136(1): p. 77-82.
    32. Mohammadi, S., et al., An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst, 2015. 140(19): p. 6493-9.
    33. Songjaroen, T., et al., Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta, 2011. 85(5): p. 2587-93.
    34. Chiang, C.K., et al., Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Talanta, 2019. 194: p. 837-845.
    35. Abe, K., K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical chemistry, 2008. 80(18): p. 6928-6934.
    36. He, Y., et al., 3D Printed Paper-Based Microfluidic Analytical Devices. Micromachines (Basel), 2016. 7(7).
    37. Fenton, E.M., et al., Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces, 2009. 1(1): p. 124-9.
    38. Postulka, N., et al., Combining Wax Printing with Hot Embossing for the Design of Geometrically Well-Defined Microfluidic Papers. ACS Appl Mater Interfaces, 2019. 11(4): p. 4578-4587.
    39. Olkkonen, J., K. Lehtinen, and T. Erho, Flexographically printed fluidic structures in paper. Analytical chemistry, 2010. 82(24): p. 10246-10250.
    40. Shin, J., J. Park, and J.-K. Park, Organic Solvent and Surfactant Resistant Paper-Fluidic Devices Fabricated by One-Step Embossing of Nonwoven Polypropylene Sheet. Micromachines, 2017. 8(1).
    41. Ghosh, R., et al., Fabrication of laser printed microfluidic paper-based analytical devices (LP-microPADs) for point-of-care applications. Sci Rep, 2019. 9(1): p. 7896.
    42. Cardoso, T.M.G., et al., Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Anal Chim Acta, 2017. 974: p. 63-68.
    43. Fansler, T.D. and S.E. Parrish, Spray measurement technology: a review. Measurement Science and Technology, 2015. 26(1).
    44. Sou, A., S. Hosokawa, and A. Tomiyama, Effects of cavitation in a nozzle on liquid jet atomization. International Journal of Heat and Mass Transfer, 2007. 50(17-18): p. 3575-3582.
    45. Coghe, A. and G.E. Cossali, Quantitative optical techniques for dense sprays investigation: A survey. Optics and Lasers in Engineering, 2012. 50(1): p. 46-56.
    46. Kristensson, E., E. Berrocal, and M. Alden, Two-pulse structured illumination imaging. Opt Lett, 2014. 39(9): p. 2584-7.
    47. Torun, I. and M.S. Onses, Robust superhydrophobicity on paper: Protection of spray-coated nanoparticles against mechanical wear by the microstructure of paper. Surface and Coatings Technology, 2017. 319: p. 301-308.
    48. Cao, X., et al., Spray-drying of ceramics for plasma-spray coating. Journal of the European Ceramic Society, 2000. 20(14-15): p. 2433-2439.
    49. Lefebvre, A.H., Atomization and Sprays, Hemisphere Pub. Corp., New York, 1989. 1989.
    50. Liu, X., et al. A portable microfluidic paper-based device for ELISA. in 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems. 2011. IEEE.
    51. Mani, N.K., et al., Fabricating Paper Based Devices Using Correction Pens. Sci Rep, 2019. 9(1): p. 1752.
    52. Younas, M., et al., Parametric analysis of wax printing technique for fabricating microfluidic paper-based analytic devices (µPAD) for milk adulteration analysis. Microfluidics and Nanofluidics, 2019. 23(3).
    53. Henares, T.G., et al., “Drop-slip” bulk sample flow on fully inkjet-printed microfluidic paper-based analytical device. Sensors and Actuators B: Chemical, 2017. 244: p. 1129-1137.
    54. Liu, W., et al., A paper-based chemiluminescence device for the determination of ofloxacin. Spectrochim Acta A Mol Biomol Spectrosc, 2015. 137: p. 1298-303.
    55. Rosa, A.M., et al., Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal Chem, 2014. 86(9): p. 4340-7.
    56. Scida, K., et al., DNA detection using origami paper analytical devices. Anal Chem, 2013. 85(20): p. 9713-20.
    57. Carvalhal, R.F., et al., Electrochemical detection in a paper-based separation device. Analytical chemistry, 2010. 82(3): p. 1162-1165.
    58. Demirel, G. and E. Babur, Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications. Analyst, 2014. 139(10): p. 2326-31.
    59. Cate, D.M., et al., Simple, distance-based measurement for paper analytical devices. Lab Chip, 2013. 13(12): p. 2397-404.
    60. Rattanarat, P., et al., Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Analytical chemistry, 2014. 86(7): p. 3555-3562.
    61. Teepoo, S., S. Arsawiset, and P. Chanayota, One-Step Polylactic Acid Screen-Printing Microfluidic Paper-Based Analytical Device: Application for Simultaneous Detection of Nitrite and Nitrate in Food Samples. Chemosensors, 2019. 7(3).
    62. Desantes, J.M., et al., Development and validation of a theoretical model for diesel spray penetration. Fuel, 2006. 85(7-8): p. 910-917.

    下載圖示 校內:2024-07-15公開
    校外:2024-07-15公開
    QR CODE