| 研究生: |
王樂斯 Wang, Le-Si |
|---|---|
| 論文名稱: |
個人與人際間之大腦相似性預測群眾募資決策 Intra- and Inter-neural Similarities Predict Crowdfunding Decisions |
| 指導教授: |
劉世南
Liou, Shyhnan 龔俊嘉 Kung, Chun-Chia |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 創意產業設計研究所 Institute of Creative Industries Design |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 神經行銷 、群眾集資 、大腦網絡相似性 、警覺網絡 、創意 |
| 外文關鍵詞: | Neuromarketing, crowdfunding, network similarity, salience network, creativity |
| 相關次數: | 點閱:52 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
群眾集資促進網絡經濟的發展,尤其有利於新興初創企業。群眾集資的成功取決於潛在出資者的關鍵評估因素,這些因素可以透過神經相似性來識別。本研究採用十七個大腦網絡的時間變化神經數據,利用網絡在全腦動態波動,重新審視這一重要議題。五十名受試者觀看二十部真實的募資產品影片,對於每個影片,受試者在磁振照影掃描儀內做出四種選擇(贊助意願、個人喜歡、達標可能性和產品創意度),爾後口頭解釋他們的決定。結果顯示,高度的大腦相似性時間段能有效展示關鍵之產品特性,並與口頭自述內容一致。此外,大腦相似性可預測真實的大眾決策,而個體之大腦相似性則可預測個人決策。值得注意的是,警覺網絡在總體和個人決策中皆具高預期影響力,突顯其在群眾集資環境中的注意力、主觀評估和目標一致性方面的重要性。本研究其潛在貢獻不僅於神經經濟學,並可有助於創意設計產業的跨領域探索。
Crowdfunding has significantly boosted the network economy, especially benefiting emerging startups. The success of crowdfunding hinges on the critical evaluation factors of potential funders, which can be discerned through neural similarity. The present study revisits this crucial topic by investigating crowdfunding decisions using 17 networks of time-varying neural data, capturing whole-brain dynamic fluctuations in network organization. Fifty participants were randomly presented with 20 real pitching clips. For each pitch, 4 choices were made (willingness to fund, personal preference, crowdfunding success likelihood, and product creativity), followed by a verbal explanation of their decisions inside the MRI scanner. Results indicate that during periods of high network similarity, key product features were effectively demonstrated, consistent with the verbal self-reports provided. Moreover, average network similarity predicted aggregate real online outcomes, while individual network similarity predicted personal choices. Particularly, the salience network exhibited high expected influence in both aggregate and individual decisions, highlighting its importance in attention, subjective evaluation, and goal alignment in crowdfunding contexts. The potential contributions extend beyond neuroeconomics and can benefit cross-disciplinary exploration in creative design industries.
Agrawal, A., Catalini, C., & Goldfarb, A. (2015). Crowdfunding: Geography, social networks, and the timing of investment decisions. Journal of Economics & Management Strategy, 24(2), 253-274.
Ahlers, G. K., Cumming, D., Günther, C., & Schweizer, D. (2015). Signaling in equity crowdfunding. Entrepreneurship Theory and Practice, 39(4), 955-980.
Alsharif, A. H., Salleh, N. Z. M., Abdullah, M., Khraiwish, A., & Ashaari, A. (2023). Neuromarketing tools used in the marketing mix: A systematic literature and future research agenda. Sage Open, 13(1), 21582440231156563.
Altıntaş, D. (2020). A Compass to Help to Determine the Brands' Direction: A View on Hippocampus from The Marketing Perspective. Sosyal Mucit Academic Review, 1(1), 32-44.
Alvino, L., Constantinides, E., & van der Lubbe, R. H. (2021). Consumer neuroscience: Attentional preferences for wine labeling reflected in the posterior contralateral negativity. Frontiers in Psychology, 12, 688713.
Alvino, L., Pavone, L., Abhishta, A., & Robben, H. (2020). Picking your brains: Where and how neuroscience tools can enhance marketing research. Frontiers in Neuroscience, 14, 577666.
Ambler, T., Ioannides, A., & Rose, S. (2000). Brands on the brain: Neuro‐images of advertising. Business Strategy Review, 11(3), 17-30.
Ariely, D., & Berns, G. S. (2010). Neuromarketing: the hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284-292.
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839-851.
Awad, M., Khanna, R., Awad, M., & Khanna, R. (2015). Support vector machines for classification. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, 39-66.
Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T., Krienen, F., Buckner, R. L., & Öngür, D. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 109-118.
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353-364.
Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D., Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T. R., & Kane, M. J. (2018). Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences, 115(5), 1087-1092.
Bell, L., Vogt, J., Willemse, C., Routledge, T., Butler, L. T., & Sakaki, M. (2018). Beyond self-report: A review of physiological and neuroscientific methods to investigate consumer behavior. Frontiers in Psychology, 9, 387541.
Belleflamme, P., Lambert, T., & Schwienbacher, A. (2014). Crowdfunding: Tapping the right crowd. Journal of Business Venturing, 29(5), 585-609.
Bennett, C. M., & Miller, M. B. (2013). fMRI reliability: Influences of task and experimental design. Cognitive, Affective, & Behavioral Neuroscience, 13, 690-702.
Berns, G. S., & Moore, S. E. (2012). A neural predictor of cultural popularity. Journal of Consumer Psychology, 22(1), 154-160.
Bertolero, M. A., Yeo, B. T., & D’Esposito, M. (2015). The modular and integrative functional architecture of the human brain. Proceedings of the National Academy of Sciences, 112(49), E6798-E6807.
Betzel, R. F., Byrge, L., Esfahlani, F. Z., & Kennedy, D. P. (2020). Temporal fluctuations in the brain’s modular architecture during movie-watching. NeuroImage, 213, 116687.
Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., & Ward, B. D. (2004). Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience, 7(3), 295-301.
Blumstein, D. T., Bryant, G. A., & Kaye, P. (2012). The sound of arousal in music is context-dependent. Biology Letters, 8(5), 744-747.
Bolla, K. I., Eldreth, D. A., London, E. D., Kiehl, K. A., Mouratidis, M., Contoreggi, C., Matochik, J. A., Kurian, V., Cadet, J.-L., & Kimes, A. S. (2003). Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. NeuroImage, 19(3), 1085-1094.
Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895.
Brandman, T., Malach, R., & Simony, E. (2021). The surprising role of the default mode network in naturalistic perception. Communications Niology, 4(1), 79.
Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T., & Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186-198.
Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365-376.
Cacioppo, J. T., Cacioppo, S., & Petty, R. E. (2018). The neuroscience of persuasion: A review with an emphasis on issues and opportunities. Social Neuroscience, 13(2), 129-172.
Chand, G. B., & Dhamala, M. (2016). The salience network dynamics in perceptual decision-making. NeuroImage, 134, 85-93.
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-27.
Chen, W. G., Schloesser, D., Arensdorf, A. M., Simmons, J. M., Cui, C., Valentino, R., Gnadt, J. W., Nielsen, L., Hillaire-Clarke, C. S., & Spruance, V. (2021). The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends in Neurosciences, 44(1), 3-16.
Chen, X., Zheng, T., Han, L., Chang, Y., & Luo, Y. (2017). The neural dynamics underlying the interpersonal effects of emotional expression on decision making. Scientific Reports, 7(1), 46651.
Chudasama, Y., Daniels, T. E., Gorrin, D. P., Rhodes, S. E., Rudebeck, P. H., & Murray, E. A. (2013). The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cerebral Cortex, 23(12), 2884-2898.
Cooper, N., Bassett, D. S., & Falk, E. B. (2017). Coherent activity between brain regions that code for value is linked to the malleability of human behavior. Scientific Reports, 7(1), 1-10.
Cremers, H. R., Wager, T. D., & Yarkoni, T. (2017). The relation between statistical power and inference in fMRI. PloS One, 12(11), e0184923.
Crespo-Pereira, V., Membiela-Pollán, M., & Sánchez-Amboage, E. (2022). Nostalgia, retro-marketing, and neuromarketing: an exploratory review. Journal of Creative Industries and Cultural Studies-JOCIS(7), 107-126.
Dey, S., Duff, B., Karahalios, K., & Fu, W.-T. (2017). The art and science of persuasion: not all crowdfunding campaign videos are the same. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, 755-769.
Engel, T. A., & Wang, X.-J. (2011). Same or different? A neural circuit mechanism of similarity-based pattern match decision making. Journal of Neuroscience, 31(19), 6982-6996.
Engelmann, J. B., & Tamir, D. (2009). Individual differences in risk preference predict neural responses during financial decision-making. Brain Research, 1290, 28-51.
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195-212.
Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48, 1-18.
Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617.
Erk, S., Spitzer, M., Wunderlich, A. P., Galley, L., & Walter, H. (2002). Cultural objects modulate reward circuitry. NeuroReport, 13(18), 2499-2503.
Falk, E. B., Berkman, E. T., & Lieberman, M. D. (2012). From neural responses to population behavior: neural focus group predicts population-level media effects. Psychological Science, 23(5), 439-445.
Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 2669-2674.
Finn, E. S., & Bandettini, P. A. (2021). Movie-watching outperforms rest for functional connectivity-based prediction of behavior. NeuroImage, 235, 117963.
Forbes, H., & Schaefer, D. (2017). Guidelines for successful crowdfunding. Procedia Cirp, 60, 398-403.
Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems, 23.
Fukushima, M., Betzel, R. F., He, Y., de Reus, M. A., van den Heuvel, M. P., Zuo, X.-N., & Sporns, O. (2018). Fluctuations between high-and low-modularity topology in time-resolved functional connectivity. NeuroImage, 180, 406-416.
Fukushima, M., Betzel, R. F., He, Y., van den Heuvel, M. P., Zuo, X.-N., & Sporns, O. (2018). Structure–function relationships during segregated and integrated network states of human brain functional connectivity. Brain Structure and Function, 223(3), 1091-1106.
Fukushima, M., & Sporns, O. (2020). Structural determinants of dynamic fluctuations between segregation and integration on the human connectome. Communications Biology, 3(1), 1-11.
Genevsky, A., & Knutson, B. (2015). Neural affective mechanisms predict market-level microlending. Psychological Science, 26(9), 1411-1422.
Genevsky, A., Yoon, C., & Knutson, B. (2017). When brain beats behavior: Neuroforecasting crowdfunding outcomes. Journal of Neuroscience, 37(36), 8625-8634.
Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.
Gier, N. R., Strelow, E., & Krampe, C. (2020). Measuring dlPFC signals to predict the success of merchandising elements at the point-of-sale–A fNIRS approach. Frontiers in Neuroscience, 14, 575494.
Gilson, M., Deco, G., Friston, K. J., Hagmann, P., Mantini, D., Betti, V., Romani, G. L., & Corbetta, M. (2018). Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions. NeuroImage, 180, 534-546.
Golnar-Nik, P., Farashi, S., & Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. Physiology & Behavior, 207, 90-98.
Gougoux, F., Zatorre, R. J., Lassonde, M., Voss, P., & Lepore, F. (2005). A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biology, 3(2), e27.
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage, 99, 180-190.
Grosenick, L., Greer, S., & Knutson, B. (2008). Interpretable classifiers for fMRI improve prediction of purchases. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 539-548.
Handwerker, D. A., Roopchansingh, V., Gonzalez-Castillo, J., & Bandettini, P. A. (2012). Periodic changes in fMRI connectivity. NeuroImage, 63(3), 1712-1719.
Harris, J. M., Ciorciari, J., & Gountas, J. (2018). Consumer neuroscience for marketing researchers. Journal of Consumer Behaviour, 17(3), 239-252.
Hart, E. E., Gerson, J. O., Zoken, Y., Garcia, M., & Izquierdo, A. (2017). Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option. European Journal of Neuroscience, 46(1), 1682-1688.
Hasson, U., & Honey, C. J. (2012). Future trends in Neuroimaging: Neural processes as expressed within real-life contexts. NeuroImage, 62(2), 1272-1278.
Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., & Heeger, D. J. (2008). Neurocinematics: The neuroscience of film. Projections, 2(1), 1-26.
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634-1640.
Herd, S., Krueger, K., Nair, A., Mollick, J., & O’Reilly, R. (2021). Neural mechanisms of human decision-making. Cognitive, Affective, & Behavioral Neuroscience, 21(1), 35-57.
Horr, N. K., Han, K., Mousavi, B., & Tang, R. (2022). Neural signature of buying decisions in real-world online shopping scenarios–An exploratory electroencephalography study series. Frontiers in Human Neuroscience, 15, 797064.
Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6), 1-4.
Hu, M., Li, X., & Shi, M. (2015). Product and pricing decisions in crowdfunding. Marketing Science, 34(3), 331-345.
Huang, R., Ha, S., & Kim, S.-H. (2018). Narrative persuasion in social media: an empirical study of luxury brand advertising. Journal of Research in Interactive Marketing, 12(3), 274-292.
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., & Gonzalez-Castillo, J. (2013). Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage, 80, 360-378.
Huth, A. G., Nishimoto, S., Vu, A. T., & Gallant, J. L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron, 76(6), 1210-1224.
Jackson, D. C., Malmstadt, J. R., Larson, C. L., & Davidson, R. J. (2000). Suppression and enhancement of emotional responses to unpleasant pictures. Psychophysiology, 37(4), 515-522.
Jain, P. K., Pamula, R., & Srivastava, G. (2021). A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews. Computer Science Review, 41, 100413.
Kaminski, J. C., & Hopp, C. (2020). Predicting outcomes in crowdfunding campaigns with textual, visual, and linguistic signals. Small Business Economics, 55(3), 627-649.
Kang, M. J., Rangel, A., Camus, M., & Camerer, C. F. (2011). Hypothetical and real choice differentially activate common valuation areas. Journal of Neuroscience, 31(2), 461-468.
Karmarkar, U. R., & Plassmann, H. (2019). Consumer neuroscience: Past, present, and future. Organizational Research Methods, 22(1), 174-195.
Karmarkar, U. R., & Yoon, C. (2016). Consumer neuroscience: Advances in understanding consumer psychology. Current Opinion in Psychology, 10, 160-165.
Kauppi, J.-P., Jääskeläinen, I. P., Sams, M., & Tohka, J. (2010). Inter-subject correlation of brain hemodynamic responses during watching a movie: localization in space and frequency. Frontiers in Neuroinformatics, 5.
Kenett, Y. N., Medaglia, J. D., Beaty, R. E., Chen, Q., Betzel, R. F., Thompson-Schill, S. L., & Qiu, J. (2018). Driving the brain towards creativity and intelligence: A network control theory analysis. Neuropsychologia, 118, 79-90.
Khosla, M., Ngo, G. H., Jamison, K., Kuceyeski, A., & Sabuncu, M. R. (2021). Cortical response to naturalistic stimuli is largely predictable with deep neural networks. Science Advances, 7(22), eabe7547.
Kislov, A., Shestakova, A., Ushakov, V., Martinez-Saito, M., Beliaeva, V., Savelo, O., Vasilchuk, A., & Klucharev, V. (2023). The prediction of market-level food choices by the neural valuation signal. PloS One, 18(6), e0286648.
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21(16), RC159-RC159.
Knutson, B., & Genevsky, A. (2018). Neuroforecasting aggregate choice. Current Directions in Psychological Science, 27(2), 110-115.
Knutson, B., & Greer, S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1511), 3771-3786.
Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Loewenstein, G. (2007). Neural predictors of purchases. Neuron, 53(1), 147-156.
Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience, 25(19), 4806-4812.
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 20-27.
Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X.-N., Spreng, N., Ge, T., & Holmes, A. (2021). Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cerebral Cortex, 31(10), 4477-4500.
Krawitz, A., Fukunaga, R., & Brown, J. W. (2010). Anterior insula activity predicts the influence of positively framed messages on decision making. Cognitive, Affective, & Behavioral Neuroscience, 10(3), 392-405.
Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple “buy buttons” in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122-128.
Kuppuswamy, V., & Bayus, B. L. (2018). Crowdfunding creative ideas: The dynamics of project backers. In The economics of crowdfunding (pp. 151-182). Springer.
Lamichhane, B., Adhikari, B. M., & Dhamala, M. (2016). Salience network activity in perceptual decisions. Brain Connectivity, 6(7), 558-571.
Lee, M. T., & Theokary, C. (2021). The superstar social media influencer: Exploiting linguistic style and emotional contagion over content? Journal of Business Research, 132, 860-871.
Lee, N., Brandes, L., Chamberlain, L., & Senior, C. (2017). This is your brain on neuromarketing: reflections on a decade of research. Journal of Marketing Management, 33(11-12), 878-892.
Leong, Y. C., Hughes, B. L., Wang, Y., & Zaki, J. (2019). Neurocomputational mechanisms underlying motivated seeing. Nature Human Behaviour, 3(9), 962-973.
Li, Y., Rakesh, V., & Reddy, C. K. (2016). Project success prediction in crowdfunding environments. Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, 247-256.
Lim, W. M. (2018a). Demystifying neuromarketing. Journal of Business Research, 91, 205-220.
Lim, W. M. (2018b). What will business-to-business marketers learn from neuro-marketing? Insights for business marketing practice. Journal of Business-to-Business Marketing, 25(3), 251-259.
Louie, K. (2013). Integrating salience and value in decision making. Proceedings of the National Academy of Sciences, 110(40), 15853-15854.
Malezieux, M., Klein, A. S., & Gogolla, N. (2023). Neural circuits for emotion. Annual Review of Neuroscience, 46, 211-231.
McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379-387.
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214, 655-667.
Mériau, K., Wartenburger, I., Kazzer, P., Prehn, K., Lammers, C.-H., Van der Meer, E., Villringer, A., & Heekeren, H. R. (2006). A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision making. NeuroImage, 33(3), 1016-1027.
Meyskens, M., & Bird, L. (2015). Crowdfunding and value creation. Entrepreneurship Research Journal, 5(2), 155-166.
Mheich, A., Wendling, F., & Hassan, M. (2020). Brain network similarity: methods and applications. Network Neuroscience, 4(3), 507-527.
Mihalik, A., & Noppeney, U. (2020). Causal inference in audiovisual perception. Journal of Neuroscience, 40(34), 6600-6612.
Mileti, A., Guido, G., & Prete, M. I. (2016). Nanomarketing: a new frontier for neuromarketing. Psychology & Marketing, 33(8), 664-674.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202.
Minati, L., Grisoli, M., Seth, A. K., & Critchley, H. D. (2012). Decision-making under risk: a graph-based network analysis using functional MRI. NeuroImage, 60(4), 2191-2205.
Mitra, T., & Gilbert, E. (2014). The language that gets people to give: Phrases that predict success on kickstarter. Proceedings of the 17th ACM conference on Computer Supported Cooperative Work & Social Computing, 49-61.
Mollick, E. (2012). The dynamics of crowdfunding: Determinants of success and failure. Journal of Business Venturing, 29(1), 1-16.
Mollick, E. (2014). The dynamics of crowdfunding: An exploratory study. Journal of Business Venturing, 29(1), 1-16.
Mollick, E., & Nanda, R. (2016). Wisdom or madness? Comparing crowds with expert evaluation in funding the arts. Management Science, 62(6), 1533-1553.
Molnar-Szakacs, I., & Uddin, L. Q. (2022). Anterior insula as a gatekeeper of executive control. Neuroscience & Biobehavioral Reviews, 139, 104736.
Mora-Cruz, A., & Palos-Sanchez, P. R. (2023). Crowdfunding platforms: a systematic literature review and a bibliometric analysis. International Entrepreneurship and Management Journal, 1-32.
Morgane, P. J., Galler, J. R., & Mokler, D. J. (2005). A review of systems and networks of the limbic forebrain/limbic midbrain. Progress in Neurobiology, 75(2), 143-160.
Morin, C. (2011). Neuromarketing: the new science of consumer behavior. Society, 48(2), 131-135.
Moysidou, K., & Hausberg, J. P. (2020). In crowdfunding we trust: A trust-building model in lending crowdfunding. Journal of Small Business Management, 58(3), 511-543.
Nagel, R., Brovelli, A., Heinemann, F., & Coricelli, G. (2018). Neural mechanisms mediating degrees of strategic uncertainty. Social Cognitive and Affective Neuroscience, 13(1), 52-62.
Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2004). Stimulus modality, perceptual overlap, and the go/no‐go N2. Psychophysiology, 41(1), 157-160.
Noble, W. S. (2006). What is a support vector machine? Nature biotechnology, 24(12), 1565-1567.
Ordanini, A., Miceli, L., Pizzetti, M., & Parasuraman, A. (2011). Crowd‐funding: transforming customers into investors through innovative service platforms. Journal of Service Management, 22(4), 443-470.
Oren, N., Shapira-Lichter, I., Lerner, Y., Tarrasch, R., Hendler, T., Giladi, N., & Ash, E. L. (2016). How attention modulates encoding of dynamic stimuli. Frontiers in Human Neuroscience, 10, 507.
Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2018). Similar neural responses predict friendship. Nature Communications, 9(1), 332.
Peiris, S., Tobia, M. J., Smith, A., Grun, E., Elyan, R., Eslinger, P. J., Yang, Q. X., & Karunanayaka, P. (2024). Neural correlates of chocolate brand preference: A functional MRI study. Journal of Neuroimaging.
Pessoa, L. (2005). To what extent are emotional visual stimuli processed without attention and awareness? Current Opinion in Neurobiology, 15(2), 188-196.
Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357-371.
Pessoa, L., & Hof, P. R. (2015). From Paul Broca’s great limbic lobe to the limbic system. The Journal of Comparative Neurology, 523(17), 2495.
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2002). Attentional control of the processing of neutral and emotional stimuli. Cognitive Brain Research, 15(1), 31-45.
Petrescu-Mag, R. M., Petrescu, D. C., & Azadi, H. (2020). A social perspective on soil functions and quality improvement: Romanian farmers’ perceptions. Geoderma, 380, 114573.
Pirolo, L., & Presutti, M. (2010). The impact of social capital on the start-ups’ performance growth. Journal of Small Business Management, 48(2), 197-227.
Plassmann, H., Ramsøy, T. Z., & Milosavljevic, M. (2012). Branding the brain: A critical review and outlook. Journal of Consumer Psychology, 22(1), 18-36.
Plassmann, H., Venkatraman, V., Huettel, S., & Yoon, C. (2015). Consumer neuroscience: applications, challenges, and possible solutions. Journal of Marketing Research, 52(4), 427-435.
Rahnev, D., Nee, D. E., Riddle, J., Larson, A. S., & D’Esposito, M. (2016). Causal evidence for frontal cortex organization for perceptual decision making. Proceedings of the National Academy of Sciences, 113(21), 6059-6064.
Rawnaque, F. S., Rahman, K. M., Anwar, S. F., Vaidyanathan, R., Chau, T., Sarker, F., & Mamun, K. A. A. (2020). Technological advancements and opportunities in Neuromarketing: a systematic review. Brain Informatics, 7, 1-19.
Ren, J., Huang, F., Zhou, Y., Zhuang, L., Xu, J., Gao, C., Qin, S., & Luo, J. (2020). The function of the hippocampus and middle temporal gyrus in forming new associations and concepts during the processing of novelty and usefulness features in creative designs. NeuroImage, 214, 116751.
Russo, F. (2011). Correlational data, causal hypotheses, and validity. Journal for General Philosophy of Science, 42, 85-107.
Sakagami, M., & Pan, X. (2007). Functional role of the ventrolateral prefrontal cortex in decision making. Current Opinion in Neurobiology, 17(2), 228-233.
Sauermann, H., Franzoni, C., & Shafi, K. (2019). Crowdfunding scientific research: Descriptive insights and correlates of funding success. PloS One, 14(1), e0208384.
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349-2356.
Sescousse, G., Caldú, X., Segura, B., & Dreher, J.-C. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681-696.
Shane, S., Drover, W., Clingingsmith, D., & Cerf, M. (2020). Founder passion, neural engagement and informal investor interest in startup pitches: An fMRI study. Journal of Business Venturing, 35(4), 105949.
Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2016). The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron, 92(2), 544-554.
Shinn, A. K., Baker, J. T., Lewandowski, K. E., Öngür, D., & Cohen, B. M. (2015). Aberrant cerebellar connectivity in motor and association networks in schizophrenia. Frontiers in Human Neuroscience, 9, 134.
Simmons, W. K., Avery, J. A., Barcalow, J. C., Bodurka, J., Drevets, W. C., & Bellgowan, P. (2013). Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping, 34(11), 2944-2958.
Song, H., Finn, E. S., & Rosenberg, M. D. (2021). Neural signatures of attentional engagement during narratives and its consequences for event memory. Proceedings of the National Academy of Sciences, 118(33), e2021905118.
Sonkusare, S., Breakspear, M., & Guo, C. (2019). Naturalistic stimuli in neuroscience: critically acclaimed. Trends in Cognitive Sciences, 23(8), 699-714.
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 12569-12574.
Stanton, S. J., Sinnott-Armstrong, W., & Huettel, S. A. (2017). Neuromarketing: Ethical implications of its use and potential misuse. Journal of Business Ethics, 144, 799-811.
Stoll, M., Baecke, S., & Kenning, P. (2008). What they see is what they get? An fMRI‐study on neural correlates of attractive packaging. Journal of Consumer Behaviour: An International Research Review, 7(4‐5), 342-359.
Sun, L., Zhao, Y., & Ling, B. (2020). The joint influence of online rating and product price on purchase decision: An EEG study. Psychology Research and Behavior Management, 291-301.
Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the replicability of task-based fMRI studies. Communications Biology, 1(1), 62.
Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature reviews neuroscience, 16(1), 55-61.
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology, 34(4), 300-306.
Valenti, V. E. (2022). New insights into the role of the vagus nerve in health and disease: Basic and clinical studies. Frontiers in Neuroscience, 16, 979695.
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA psychiatry, 72(12), 1219-1226.
Van Borkulo, C. D., van Bork, R., Boschloo, L., Kossakowski, J. J., Tio, P., Schoevers, R. A., Borsboom, D., & Waldorp, L. J. (2022). Comparing network structures on three aspects: A permutation test. Psychological Methods.
Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., Hershfield, H. E., Ishihara, M., & Winer, R. S. (2015). Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. Journal of Marketing Research, 52(4), 436-452.
Volz, K. G., Schubotz, R. I., & von Cramon, D. Y. (2005). Variants of uncertainty in decision-making and their neural correlates. Brain Research Bulletin, 67(5), 403-412.
Wang, L., Li, L., Shen, Q., Zheng, J., & Ebstein, R. P. (2019). To run with the herd or not: electrophysiological dynamics are associated with preference change in crowdfunding. Neuropsychologia, 134, 107232.
Wesemann, H., & Wincent, J. (2021). A whole new world: Counterintuitive crowdfunding insights for female founders. Journal of Business Venturing Insights, 15, e00235.
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological Science, 17(7), 592-598.
Yadava, M., Kumar, P., Saini, R., Roy, P. P., & Prosad Dogra, D. (2017). Analysis of EEG signals and its application to neuromarketing. Multimedia Tools and Applications, 76, 19087-19111.
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., & Polimeni, J. R. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125-1165.
Zhang, G., Li, Y., & Zhang, J. (2019). Tracking the dynamic functional network interactions during goal-directed auditory tasks by brain state clustering. Frontiers in Neuroscience, 13, 1220.
Zhang, X., Gloor, P. A., & Grippa, F. (2013). Measuring creative performance of teams through dynamic semantic social network analysis. International Journal of Organisational Design and Engineering, 3(2), 165-184.
Zhou, M., Chen, G. H., Ferreira, P., & Smith, M. D. (2021). Consumer behavior in the online classroom: Using video analytics and machine learning to understand the consumption of video courseware. Journal of Marketing Research, 58(6), 1079-1100.