| 研究生: |
李介豪 Li, Chieh-Hao |
|---|---|
| 論文名稱: |
利用奈米微盤SELEX技術開發PD-L1標靶適體 Development of Programmed Death-ligand 1 Targeting Aptamers by Nanodisc-based SELEX |
| 指導教授: |
陳玉玲
Chen, Yuh-Ling 謝達斌 Shieh, Dar-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 計畫性細胞死亡蛋白-配體1 、奈米微盤 、適體 、奈米微盤-SELEX |
| 外文關鍵詞: | PD-L1, Nano-disc, Aptamer, Nano-disc-SELEX |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
每年皆有數百萬人因癌症而死亡,固癌症對於人類之健康為一大挑戰。免疫治療為癌症新穎之治療方法,其主要透過刺激我們自身免系統以攻擊腫瘤細胞。此免疫檢查點療法目前已徹底改變傳統癌症治療方式,且改變我們如何看待癌症。PD-1為一位於T細胞表面上表達之蛋白質,其配體 PD-L1則表達於癌細胞表面。它們類似CTLA-4與CD80/CD86之作用,可活化T細胞之抑制系統,但詳細機制不同。當PD-1 / PD-L1之間相互作用遭受阻斷之時,可導致耗盡之T細胞表型逆轉以及引發抗腫瘤之免疫反應。奈米微盤為直徑為8-16 nm自組雙層磷脂質之盤狀片段,其由兩條支架蛋白穩定於溶液中。可作為穩定且高度可溶之膜模擬物,其具有固定比例之磷脂質組成並可將親和標籤添加至支架蛋白上,因此奈米微盤於膜蛋白之生物物理學以及生物化學研究上為一具有吸引力之模型系統。適體為一可形成特異性三維結構以及具高特異性和親和性結合之標靶分子寡核苷酸。近期,適體已成為一類新型強大之配體,其具有診斷和治療應用之優越潛力。故開發標靶PD-L1之特異性適體為癌症患者提供新的癌症治療之選擇。於本研究中,我們使用過表達PD-L1之細胞株進行萃取膜蛋白,並將其膜蛋白包裹成奈米微盤,並使用適體庫與其奈米微盤進行篩選,並建立納米微盤指數富集系統平台(Nano-disc-SELEX),針對PD-L1篩選出具有高度專一性且具高親和力之適體。透過PCR以及即時聚合酶連鎖反應分析其專一性及親和能力。其結果顯示與控制組奈米微盤相比,我們發現PD-L1適體會優先與PD-L1奈米微盤結合證實其具有專一性,此外也對PD-L1奈米微盤具有高親合能力。將來,我們將測試其PD-L1適體於體內及體外之作用能力。期望本研究成果可作為新癌症免疫治療之藥物,提供患者治療新選擇以及希望此平台技術可供其餘類似膜蛋白適體篩選之參考,以增進生物醫學對於膜蛋白相關之適體研究。
In this study, we extracted the membrane proteins from PD-L1-Flag overexpression cells and assembled it in Nano-discs. PD-L1-Flag-assembed Nano-disc-based systematic evolution of ligands by exponential enrichment (Nano-disc-SELEX) was performed to screen DNA aptamers targeted PD-L1-Flag and then amplified products by PCR. We obtained four Aptamer and we determine their binding specificity. PD-L1-aptamers preferentially bound PD-L1-Flag-nanodisc compared with control Nano-disc. Furthermore, we analyzed the binding affinity by quantitative real time polymerase chain reaction detection and showed that PD-L1 aptamers candidates had high binding affinity to PD-L1-Flag-nanodiscs. With the present experimental results provide not only a powerful Nano-disc-SELEX system but also a reference for screening membrane protein-targeted aptamers which will apply in further cancer immunotherapy development.
1 Kryczek, I. et al. Cutting edge: IFN-γ enables APC to promote memory Th17 and abate Th1 cell development. The Journal of Immunology 181, 5842-5846 (2008).
2 Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer discovery 3, 1355-1363 (2013).
3 Wölfle, S. J. et al. PD‐L1 expression on tolerogenic APCs is controlled by STAT‐3. European journal of immunology 41, 413-424 (2011).
4 Baas, M. et al. TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance. elife 5, e08133 (2016).
5 Marzec, M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proceedings of the National Academy of Sciences 105, 20852-20857 (2008).
6 Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. Journal of Experimental Medicine 211, 781-790 (2014).
7 Parsa, A. T. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature medicine 13, 84 (2007).
8 Cortez, M. A. et al. PDL1 Regulation by p53 via miR-34. JNCI: Journal of the National Cancer Institute 108 (2016).
9 Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. The Lancet 387, 1540-1550 (2016).
10 Goldberg, S. B. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. The lancet oncology 17, 976-983 (2016).
11 Ribas, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. Jama 315, 1600-1609 (2016).
12 Cohen, E. E. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. The Lancet 393, 156-167 (2019).
13 Bauml, J. et al. Pembrolizumab for platinum-and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 35, 1542-1549 (2017).
14 Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. New England Journal of Medicine 373, 1803-1813 (2015).
15 Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. Journal of clinical oncology 33, 1430 (2015).
16 Powles, T. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. The Lancet 391, 748-757 (2018).
17 Zhuo, Z. et al. Recent advances in SELEX technology and aptamer applications in biomedicine. International journal of molecular sciences 18, 2142 (2017).
18 Thompson, R. H. et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proceedings of the National Academy of Sciences 101, 17174-17179 (2004).
19 Shen, M. J. et al. Radiation alters PD-L1/NKG2D ligand levels in lung cancer cells and leads to immune escape from NK cell cytotoxicity via IL-6-MEK/Erk signaling pathway. Oncotarget 8, 80506 (2017).
20 Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734-1736 (1996).
21 Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677-704 (2008).
22 Konishi, J. et al. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clinical cancer research 10, 5094-5100 (2004).
23 Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nature Reviews Immunology 4, 336 (2004).
24 Rouck, J. E., Krapf, J. E., Roy, J., Huff, H. C. & Das, A. Recent advances in nanodisc technology for membrane protein studies (2012–2017). FEBS letters 591, 2057-2088 (2017).
25 Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into Nanodiscs. FEBS letters 584, 1721-1727 (2010).
26 Bayburt, T. H. & Sligar, S. G. Self‐assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein science 12, 2476-2481 (2003).
27 Denisov, I. G., Grinkova, Y. V., Lazarides, A. A. & Sligar, S. G. Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. Journal of the American Chemical Society 126, 3477-3487 (2004).
28 Grinkova, Y. V., Denisov, I. G. & Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Engineering, Design and Selection 23, 843-848 (2010).
29 Glück, J. M. et al. Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. Journal of the American Chemical Society 131, 12060-12061 (2009).
30 Glück, J. M., Koenig, B. W. & Willbold, D. Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Analytical biochemistry 408, 46-52 (2011).
31 Gatsogiannis, C. et al. Membrane insertion of a Tc toxin in near-atomic detail. Nature structural & molecular biology 23, 884 (2016).
32 Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347 (2016).
33 Bhattacharya, P. et al. Nanodisc-incorporated hemagglutinin provides protective immunity against influenza virus infection. Journal of virology 84, 361-371 (2010).
34 Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nature materials 16, 489 (2017).
35 Kuai, R. et al. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Science advances 4, eaao1736 (2018).
36 Liu, J., Cao, Z. & Lu, Y. Functional nucleic acid sensors. Chemical reviews 109, 1948-1998 (2009).
37 Tan, W., Donovan, M. J. & Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chemical reviews 113, 2842-2862 (2013).
38 Santosh, B. & Yadava, P. K. Nucleic acid aptamers: research tools in disease diagnostics and therapeutics. BioMed research international 2014 (2014).
39 Hamaguchi, N., Ellington, A. & Stanton, M. Aptamer beacons for the direct detection of proteins. Analytical biochemistry 294, 126-131 (2001).
40 Zamay, G. S. et al. Aptamers selected to postoperative lung adenocarcinoma detect circulating tumor cells in human blood. Molecular Therapy 23, 1486-1496 (2015).
41 Daniels, D. A., Chen, H., Hicke, B. J., Swiderek, K. M. & Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proceedings of the National Academy of Sciences 100, 15416-15421 (2003).
42 Zimbres, F. M., Tárnok, A., Ulrich, H. & Wrenger, C. Aptamers: novel molecules as diagnostic markers in bacterial and viral infections? BioMed research international 2013 (2013).
43 Hamula, C. L., Zhang, H., Guan, L. L., Li, X.-F. & Le, X. C. Selection of aptamers against live bacterial cells. Analytical chemistry 80, 7812-7819 (2008).
44 Pan, R. et al. Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding. Emerging microbes & infections 4, 1-8 (2015).
45 Yu, S. et al. Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast Cancer Effects In Vivo. Journal of biomedical nanotechnology 15, 1135-1148 (2019).
46 Germer, K., Leonard, M. & Zhang, X. RNA aptamers and their therapeutic and diagnostic applications. International journal of biochemistry and molecular biology 4, 27 (2013).
47 Song, K.-M., Lee, S. & Ban, C. Aptamers and their biological applications. Sensors 12, 612-631 (2012).
48 Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. nature 346, 818 (1990).
49 Zhong, W. et al. Identification and Application of an Aptamer Targeting Papillary Thyroid Carcinoma Using Tissue-SELEX. Analytical chemistry (2019).
50 Zhao, Y. et al. Terminal deoxynucleotidyl transferase-initiated molecule beacons arrayed aptamer probe for sensitive detection of metastatic colorectal cancer cells. Talanta 202, 152-158 (2019).
51 Wu, S. et al. A novel label-free terbium (III)-aptamer based aptasensor for ultrasensitive and highly specific detection of acute lymphoma leukemia cells. Analyst (2019).
52 Zhou, Y., Qi, X., Liu, Y., Zhang, F. & Yan, H. DNA Nanoscaffold‐Assisted Selection of Femtomolar Bivalent Aptamers for Human α‐Thrombin with Potent Anticoagulant Activity. ChemBioChem (2019).
53 King, D. J., Ventura, D. A., Brasier, A. R. & Gorenstein, D. G. Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. Biochemistry 37, 16489-16493 (1998).
54 Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature reviews drug discovery 5, 123 (2006).
55 Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. Journal of clinical oncology 33, 1974 (2015).
56 Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer 12, 252 (2012).
57 Alexander, W. The checkpoint immunotherapy revolution: what started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge. Pharmacy and Therapeutics 41, 185 (2016).
58 Iwai, Y., Hamanishi, J., Chamoto, K. & Honjo, T. Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of biomedical science 24, 26 (2017).
59 Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. New England Journal of Medicine 377, 2500-2501 (2017).
60 Huang, B.-T. et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Molecular Therapy-Nucleic Acids 8, 520-528 (2017).
61 Li, C.-W. et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature communications 7, 12632 (2016).
62 Vocadlo, D. (The University of Chicago Press, 2009).
63 Jung, S. T., Kang, T. H., Kelton, W. & Georgiou, G. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Current opinion in biotechnology 22, 858-867 (2011).
64 Hsu, J.-M., Li, C.-W., Lai, Y.-J. & Hung, M.-C. Posttranslational Modifications of PD-L1 and Their Applications in Cancer Therapy. Cancer research 78, 6349-6353 (2018).
65 Nath, A., Atkins, W. M. & Sligar, S. G. Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46, 2059-2069 (2007).
66 Ritchie, T. et al. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods in enzymology 464, 211-231 (2009).
67 Ellington, A. D. & Szostak, J. W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850 (1992).