簡易檢索 / 詳目顯示

研究生: 李豪源
Li, Hao-Yuan
論文名稱: 基於 Reissner 混合變分原理之功能性梯度材料板三階剪力變形理論
An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates
指導教授: 吳致平
Wu, Chih-Pin
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 42
中文關鍵詞: Reissner 混合變分原理剪力變形功能性材料靜態行為
外文關鍵詞: Reissner mixed variational theorem, Shear deformations, FGM, Static, Plates
相關次數: 點閱:112下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用 Reissner 混合變分原理,配合既定之整體三階位移場和局部二階應力場假設,忽略側向正向應力之效應,推衍二維剪力變形理論,並將本理論應用於功能性異相非均質材料板之靜態問題解析。本理論對於各全域與局部域變數之假設,可滿足層間界面應力與位移的連續條件。在功能性材料的性質假設上,本文不僅討論冪次型態的材料參數,更加入級數型態的材料參數範例。根據Reissner 混合變分原理可得到一組Euler_Lagrange方程式與邊界條件,基於分離變數法將各變數以傅立葉級數展開後,本理論可應用於功能性異相非均質材料板之靜態問題解析,並進一步討論材料參數之冪次與範例板之寬厚比對於本理論適用範圍的影響。

    A Reissner mixed variational theorem (RMVT)-based third-order shear deformation theory (TSDT) is developed for the static analysis of simply-supported, multilayered functionally graded material (FGM) plates subjected to mechanical loads. The material properties of the FGM layers are assumed to obey either the exponent-law distributions through the thickness coordinate or the power-law distributions of the volume fractions of the constituents. In the present theory, Reddy’s third-order displacement model and the layerwise parabolic function distributions of transverse shear stresses are assumed in the kinematic and kinetic fields, respectively, a priori, where the effect of transverse normal stress is regarded as minor and thus ignored. The continuity conditions of both transverse shear stresses and elastic displacements at the interfaces between adjacent layers are then exactly satisfied in the present RMVT-based TSDT. On the basis of RMVT, a set of Euler_Lagrange equations associated with the possible boundary conditions is derived. In conjunction with the method of variable separation and Fourier series expansion, the present theory is successfully applied to the static analysis of simply-supported, multilayered FGM plates subjected to mechanical loads. A parametric study of the effects of the material-property gradient index and the span-thickness ratio on the displacement and stress components induced in the plates is undertaken.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 V 圖目錄 V 第一章 緒論 1.1 研究動機 1 第二章 混合 Reissner 變分理論 2.1 位移場與橫向應力的假設 4 2.2 Reissner能量函數 6 2.3 混合 Reissner 變分理論 7 2.4 Euler-Lagrange 方程式 8 第三章 應用問題解析 3.1 邊界條件與無因次化 12 3.2 雙傅立葉級數方法展開 13 第四章 數值範例與綜合討論 4.1 單層均向性板 15 4.2 多層疊合板 16 4.2.1 雙層複合材料板 16 4.2.2 三層複合材料板 17 4.3 功能性材料板 18 4.3.1 單層功能性材料板 18 4.3.2 多層疊合功能性材料板 19 第五章 結論 21 參考文獻 23 表 29 圖 34

    [1] Love AEH. The mathematical theory of elasticity. Cambridge: Cambridge Univ Press; 1927.
    [2] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 1945;12:69_76.
    [3] Mindlin RD. Influence of rotatory inertia and shear in flexural motion of isotropic elastic plates. J Appl Mech 1951;18:1031_6.
    [4] Lo KH, Christensen RM, Wu EM. A higher-order theory of plate deformation, Part 2: Laminated plates. J Appl Mech 1977;44:669_76.
    [5] Reddy JN. A simple higher-order theory for laminated composite plates. J Appl Mech 1984;51:745_52.
    [6] Woo J, Meguid SA. Nonlinear analysis of functionally graded plates and shallow shells. Int J Solids Struct 2001;38:7409_21.
    [7] Shen HS. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. Int J Mech Sci 2002;44:561_84.
    [8] Yang J, Shen HS. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Compos Part B: Eng 2003;34:103_15.
    [9] Reddy JN. Analysis of functionally graded plates. Int J Numer Methods Eng 2000;47:663_84.
    [10] Yang J, Shen HS. Vibration characteristics and transient response of shear deformable functionally graded plates in thermal environments. J Sound Vib 2002;255:579_602.
    [11] Zenkour A. Generalized shear deformation theory for bending analysis of functionally graded plates. Appl Math Modeling 2006;30:67_84.
    [12] Ferreira AJM, Batra RC, Roque CMC, Qian LF, Martins PALS. Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos Struct 2005;69:449_57.
    [13] Ferreira AJM, Batra RC, Roque CMC, Qian LF, Jorge RMN. Natural frequencies of functionally graded plates by a meshless method. Compos Struct 2006;75:593_600.
    [14] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 1973;21:571_4.
    [15] Reddy JN. An evaluation of equivalent single layer and layerwise theories of composite laminates. Compos Struct 1993;25:21_35.
    [16] Ramirez F, Heyliger PR, Pan E. Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos Part B: Eng 2006;37:10_20.
    [17] Ramirez F, Heyliger PR, Pan E. Discrete layer solution to free vibrations of functionally graded magneto-electro-elastic plates. Mech Adv Mater Struct 2006;13:249_66.
    [18] Reissner E. On a certain mixed variational theory and a proposed applications. Int J Numer Methods Eng 1984;20:1366_8.
    [19] Reissner E. On a mixed variational theorem and on a shear deformable plate theory. Int J Numer Methods Eng 1986;23:193_8.
    [20] Carrera E. Developments, ideas, and evaluations based upon Reissner’s Mixed Variational Theorem in the modeling of multilayered plates and shells. Appl Mech Rev 2001;54:301_29.
    [21] Murakami H. Laminated composite plate theory with improved in-plane responses. J Appl Mech 1986;53:661_6.
    [22] Toledano A, Murakami H. A high-order laminated plate theory with improved in-plane responses. Int J Solids Struct 1987;23:111_31.
    [23] Carrera E. Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 2003;56:287_308.
    [24] Carrera E. An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Compos Struct 2000;50:183_98.
    [25] Carrera E. An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates. J Therm Stresses 2000;23:797_831.
    [26] Carrera E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarks. Arch Comput Methods Eng 2003;10:215_96.
    [27] Brischetto S, Leetsch R, Carrera E, Wallmersperger T, Kroplin B. Thermo-mechanical bending of functionally graded plates. J Therm Stresses 2008;31:286_308.
    [28] Brischetto S, Carrera E. Refined 2D models for the analysis of functionally graded piezoelectric plates. J Intell Mater Sys Struct 2009;20:1783_97.
    [29] Carrera E, Brischetto S, Robaldo A. Variable kinematic model for the analysis of functionally graded material plates. AIAA J 2008;46:194_203.
    [30] Brischetto S, Carrera E. Advanced mixed theories for bending analysis of functionally graded plates. Comput Struct 2008 doi:10.1016/j.compstruc.2008.04.004.
    [31] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part I: Governing equations. Compos Struct 2009;87:1_11.
    [32] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part II: Layerwise theories. Compos Struct 2009;87:12_22.
    [33] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part III: Advanced mixed high order shear deformation theories. Compos Struct 2009;87:183_94.
    [34] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part IV: Zig-zag theories. Compos Struct 2009;87:195_205.
    [35] Demasi L. mixed plate theories based on the Generalized Unified Formulation. Part V: Results. Compos Struct 2009;88:1_16.
    [36] Pan E. Exact solution for functionally graded anisotropic elastic composite laminates. J Compos Mater 2003;37:1903_20.
    [37] Pan E, Han F. Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 2005;43:321_39.
    [38] Pan E, Heyliger PR. Free vibration of simply supported and multilayered magneto-electro-elastic plates. J Sound Vib 2002;252:429_42.
    [39] Kashtalyan M. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. Eur J Mech A/Solids 2004;23:853_64.
    [40] Wu CP, Syu YS. Exact solutions of functionally graded piezoelectric shells under cylindrical bending. Int J Solids Struct 2007;44:6450_72.
    [41] Wu CP, Tsai YH. Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux. Int J Eng Sci 2007;45:744_69.
    [42] Tsai YH, Wu CP. Dynamic responses of functionally graded magneto-electro-elastic shells with open-circuit surface conditions. Int J Eng Sci 2008;46:843_57.
    [43] Wu CP, Tsai YH. Cylindrical bending vibration of functionally graded piezoelectric shells using the method of perturbation. Int J Eng Math 2009;63:95_119.
    [44] Wu CP, Liu KY. A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells. Comput Mater & Continua 2007;6:177_99.
    [45] Wu CP, Chen SJ, Chiu KH. Three-dimensional static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech Res Commun 2009; doi:10.1016/j.mechrescom.2009.10.003.
    [46] Wu CP, Lu YC. A modified Pagano method for the 3D dynamic responses of functionally graded magneto-electro-elastic plates. Compos Struct 2009;90:363_72.
    [47] Wu CP, Huang SE. Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method. Comput Mater & Continua 2009;12:251_82.
    [48] Wu CP, Chiu KH, Wang YM. A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. Comput Mater & Continua 2008;18:93_132.
    [49] Pagano NJ. Exact solutions for rectangular bidirectional composites and sandwich plates. J Compos Mater 1970;4:20_34.

    下載圖示 校內:2011-08-26公開
    校外:2011-08-26公開
    QR CODE