簡易檢索 / 詳目顯示

研究生: 鍾亞宸
Jhong, Ya-Chen
論文名稱: 利用MBE成長Sb2Se3-Bi2Se3 異質結構並探討其特性
Characteristics of MBE-grown Sb2Se3-Bi2Se3 heterostructures
指導教授: 黃榮俊
Huang, Jung-Chun-Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 67
中文關鍵詞: 拓樸絕緣體異質結構自旋
外文關鍵詞: topological insulator(TI), heterostructures, spin
相關次數: 點閱:76下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在V-VI族化合物中,Bi2Se3、Bi2Te3、Sb2Te3已經被知曉為三維拓樸絕緣體,唯獨Sb2Se3是普通絕緣體,結構為正交晶系(orthorhombic)結構,其能隙(band gap)大約為1.2ev,但Bi2Se3與Sb2Se3的異質結構的理論預測還沒有實驗進行探討,這裡我更進一步的探討這異質結構的特性,它或許可以用於穿隧層和閘極介電層,未來它可以結合TI製作自旋電子元件、場效電晶體及穿隧Junction。
    我們利用MBE成功地在藍寶石基板成長了三維拓樸絕緣體(Bi2Se3)與普通絕緣體(Sb2Se3)異質結構。接著進行電性及結構的分析,發現雙層結構中的Sb2Se3與單層Sb2Se3在X-ray繞射(XRD)、原子力顯微鏡(AFM)、反射式高能電子繞射(RHEED)都有明顯的差異,說明Sb2Se3長在藍寶石基板(sapphire)與三維拓樸絕緣體(Bi2Se3)上的磊晶情況是不同的。經過XRD的分析,Sb2Se3結構是正交晶系(orthorhombic)結構,並且傾向在(120)方向上成長。有趣地,在表面的分析上有著巨大的改變,單層Sb2Se3呈現的是不均勻的奈米柱形狀而雙層結構中的Sb2Se3呈現的是較平坦的條狀且有三角形的形狀。
    另一方面,我們也從電性上探討雙層結構中的Sb2Se3絕緣性及傳輸性質,透過量測發現其I-V curve呈現非線性,說明Sb2Se3造成蕭特基位障,也間接說明Sb2Se3有絕緣特性,其價帶到費米能階的能差則利用紫外光光電子能譜(UPS)量測得到0.95ev,說明其能隙(Band gap)是蠻大的。在傳輸性質方面,透過載子濃度的變化,說明有電荷轉移的現象,並且會影響傳輸的特性,另外,也透過摻雜及三層結構(Bi2Se3/Sb2Se3 /Bi2Se3)使傳輸性質有所提升及改變。
    未來若可利用Sb2Se3結合TI製作成各式自旋電子元件,在自旋電晶體及TI異質結構研究上更能趨於實踐。

    關鍵字:拓樸絕緣體、異質結構、自旋

    Both Sb2Se3 and Bi2Se3 belong to the family of V(Bi, Sb)-VI(Se, Te) compounds. Among the four binary compounds in this family, three are predicted and confirmed to be three-dimensional topological insulators. The exception for Sb2Se3 to be an ordinary insulator is due to the weaker spin orbit coupling and its orthorhombic crystal structure at ambient pressure. However, the theoretical prediction of Sb2Se3-Bi2Se3 heterostructures systems has not been studied experimentally. In this work, we further explore the characteristics of this heterogeneous structure. Maybe Sb2Se3 can be utilized as a tunnel barrier and gate dielectric, which are essential components of many TI devices.
    We have demonstrated a successful MBE growth of Bi2Se3-Sb2Se3 heterostructures on sapphire substrate, the analysis of reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD) and atomic force microscopy (AFM) has a significant difference in Sb2Se3 on Bi2Se3/sapphire and on sapphire.
    On the other hand, our devices has nonlinear I-V curve by junction analysis, knowing that Sb2Se3 results in a Schottky-Type transport property. We also indicate that charge transfer results in higher carrier concentration are significant at Sb2Se3-Bi2Se3 systems. In addition, the transport properties can be improved and changed by doping and tri-layer structure.
    Key word: topological insulator(TI), heterostructures, spin

    目錄 摘要 I 感謝 XVII 目錄 XVIII 圖目錄 XXI 表目錄 XXIV 第一章 緒論 1 1-1 介紹 1 1-2 拓樸絕緣體Topological insulator(TI) 2 1-2-1 拓樸絕緣體的歷史(The history of topological insulator) 2 1-2-2 拓樸絕緣體的性質(The properties of topological insulator) 4 1-2-3 三維拓樸絕緣體-Bi2Se3 6 1-3 文獻回顧 7 1-3-1 Sb2Se3 7 1-3-2 Bi2Se3-Sb2Se3異質結構 10 1-3-3 電荷轉移(Charge transfer) 12 1-4 研究動機 15 第二章 基本原理 16 2-1 薄膜成長理論 16 2-1-1 薄膜沉積 16 2-1-2 薄膜成長模式 18 2-1-3 晶格匹配度 19 2-2 四點電性量測 19 2-2-1 霍爾效應量測 20 2-3 蕭特基位障與歐姆接面(Schottky barrier and Ohmic contact) 22 第三章 實驗儀器及步驟 23 3-1 分子束磊晶系統(MBE) 23 3-2實驗量測儀器 27 3-2-1 反射式高能電子繞射儀(Reflection High Energy Electron Diffraction,RHEED) 27 3-2-2 X-ray 繞射儀 29 3-2-3 原子力顯微鏡atomic force microscopy(AFM) 30 3-2-4 掃描電子顯微鏡(SEM) 32 3-3 同步加速器光源(Synchrotron Light Source) 32 3-3-1 X-ray繞射 32 3-3-2 紫外光光電子能譜UPS(Ultraviolet Photoelectron Spectroscopy) 33 3-4實驗步驟 34 3-4-1 真空系統的準備 34 3-4-2 基本備製 34 3-4-3 樣品成長(MBE) 35 3-5 元件製作 36 3-5-1旋轉塗佈儀(Spin Coater) 37 3-5-2單面光罩對準機 (Single-Side Mask Aligner) 38 3-5-3反應離子蝕刻機 (Reactive Ion Etcher; RIE) 38 3-5-4電子束蒸鍍機 (E-beam Evaporator) 39 3-6 實驗方法 40 第四章 結果與討論 41 4-1 Bi2Se3的製備 41 4-1-1 Sb-doped Bi2Se3的製備 42 4-2 Sb2Se3的製備 44 4-3 Bi2Se3-Sb2Se3 heterostructures的製備 45 4-3-1 Sb-doped Bi2Se3-Sb2Se3 heterostructures 54 4-3-2紫外光光電子能譜(UPS) 56 4-4 Sb2Se3/Bi2Se3絕緣特性 57 4-4-1 Schottky junction 58 4-5 Bi2Se3-Sb2Se3異質結構電性量測 60 4-5-1 電荷轉移(Charge transfer) 62 第五章 結論 64 Reference 65

    Reference
    [1] Moore, Joel E. "The birth of topological insulators." Nature 464.7286: 194-198. (2010).
    [2] Qi, Xiao-Liang, and Shou-Cheng Zhang. "Topological insulators and superconductors." Reviews of Modern Physics 83.4: 1057. (2011)
    [3] Mishra, S. K., S. Satpathy, and O. Jepsen. "Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide." Journal of Physics: Condensed Matter 9.2: 461. (1997).
    [4] Thonhauser, T., et al. "Thermoelectric properties of Sb 2 Te 3 under pressure and uniaxial stress." Physical Review B 68.8 : 085201. (2003).
    [5] Moore, Gordon E. "Cramming more components onto integrated circuits." Proceedings of the IEEE 86.1: 82-85. (1998).
    [6] Moore, Joel. "Topological insulators: The next generation." Nature Physics 5.6 (2009): 378-380. (2009)
    [7] Kane, Charles L., and Eugene J. Mele. "Quantum spin Hall effect in graphene." Physical review letters 95.22 : 226801. (2005).
    [8] Klitzing, K. V., Gerhard Dorda, and Michael Pepper. "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Physical Review Letters 45.6: 494. (1980).
    [9] Bernevig, B. Andrei, and Shou-Cheng Zhang. "Quantum spin Hall effect." Physical Review Letters 96.10: 106802. (2006).
    [10] Kane, Charles L., and Eugene J. Mele. "Z 2 topological order and the quantum spin Hall effect." Physical review letters 95.14: 146802. (2005).
    [11] Moore, Joel E., and Leon Balents. "Topological invariants of time-reversal-invariant band structures." Physical Review B 75.12: 121306. (2007).
    [12] Bernevig, B. Andrei, Taylor L. Hughes, and Shou-Cheng Zhang. "Quantum spin Hall effect and topological phase transition in HgTe quantum wells." Science314.5806: 1757-1761. (2006).
    [13] König, Markus, et al. "Quantum spin Hall insulator state in HgTe quantum wells." Science 318.5851: 766-770. (2007).
    [14] Fu, Liang, Charles L. Kane, and Eugene J. Mele. "Topological insulators in three dimensions." Physical review letters 98.10: 106803. (2007).
    [15] Fu, Liang, and Charles L. Kane. "Topological insulators with inversion symmetry." Physical Review B 76.4 : 045302.(2007).
    [16] Hsieh, David, et al. "A topological Dirac insulator in a quantum spin Hall phase." Nature 452.7190 : 970-974. (2008).
    [17] Zhang, Haijun, et al. "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface." Nature physics 5.6: 438-442. (2009).
    [18] Chen, Y. L., et al. "Experimental realization of a three-dimensional topological insulator, Bi2Te3." Science 325.5937: 178-181. (2009).
    [19] Hsieh, David, et al. "Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi 2 Te 3 and Sb 2 Te 3." Physical review letters103.14: 146401. (2009).
    [20] Xia, Yuqi, et al. "Observation of a large-gap topological-insulator class with a single Dirac cone on the surface." Nature Physics 5.6: 398-402.(2009)
    [21] Hasan, M. Zahid, and Charles L. Kane. "Colloquium: topological insulators." Reviews of Modern Physics 82.4 : 3045.(2010)

    [22] Hsieh, David, et al. "A tunable topological insulator in the spin helical Dirac transport regime." Nature 460.7259: 1101-1105. (2009).
    [23] Jozwiak, Chris, et al. "Widespread spin polarization effects in photoemission from topological insulators." Physical Review B 84.16: 165113. (2011).
    [24] Chen, J., et al. "Gate-voltage control of chemical potential and weak antilocalization in Bi 2 Se 3." Physical Review Letters 105.17: 176602. (2010).
    [25] Checkelsky, Joseph G., et al. "Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi 2 Se 3." Physical Review Letters 106.19: 196801. (2011).
    [26] Kim, Yong Seung, et al. "Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi 2 Se 3." Physical Review B 84.7: 073109. (2011).
    [27] Hikami, Shinobu, Anatoly I. Larkin, and Yosuke Nagaoka. "Spin-orbit interaction and magnetoresistance in the two dimensional random system." Progress of Theoretical Physics 63.2: 707-710. (1980).
    [28] Tian, Jifa, et al. "Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction." Scientific reports 4 (2014).
    [29] Wang, Z. H., et al. "Granularity controlled nonsaturating linear magnetoresistance in topological insulator Bi2Te3 films." Nano letters 14.11 (2014): 6510-6514.
    [30] 詹東霖,國立成功大學碩士論文(2012)
    [31] 沈士育,國立成功大學碩士論文(2012)
    [32] 周育恆,國立成功大學碩士論文(2013)
    [33] 陳品卉,國立成功大學碩士論文(2013)
    [34] 陳威寧,國立成功大學碩士論文(2013)
    [35] 陳奕帆,國立成功大學碩士論文(2014)
    [36] 王柏雄,國立成功大學碩士論文(2015)
    [37] 林明昱,國立成功大學碩士論文(2015)
    [38] 范姜群名,國立成功大學碩士論文(2016)
    [39] Vadapoo, Rajasekarakumar, et al. "Electronic structure of antimony selenide (Sb2Se3) from GW calculations." physica status solidi (b) 248.3: 700-705. (2011).
    [40] Liu, Wenliang, et al. "Anisotropic interactions and strain-induced topological phase transition in Sb 2 Se 3 and Bi 2 Se 3." Physical Review B 84.24: 245105. (2011).

    [41] Li, Wei, et al. "Pressure-induced topological quantum phase transition in Sb 2 Se 3." Physical Review B 89.3: 035101. (2014).
    [42] Chen, Guihuan, et al. "Organometallically Anisotropic Growth of Ultralong Sb2Se3 Nanowires with Highly Enhanced Photothermal Response." ACS applied materials & interfaces 8.4: 2819-2825. (2016).
    [43] Chen, Zhiyi, et al. "Robust topological interfaces and charge transfer in epitaxial Bi2Se3/II–VI semiconductor superlattices." Nano letters 15.10: 6365-6370. (2015).
    [44] J. C. A. Huang. Ph. D Thesis, University of Illinois(1992)
    [45] Hall, Edwin H. "On a new action of the magnet on electric currents." American Journal of Mathematics 2.3: 287-292. (1879).
    [46] Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. John wiley & sons, 2006.
    [47] Cho, Al Y., and J. R. Arthur. "Molecular beam epitaxy." Progress in solid state chemistry 10: 157-191. (1975)
    [48] National Cheng Kung University (NCKU), Center for Micro/Nano Science and Technology.( http://cmnst.ncku.edu.tw/bin/home.php)
    [49] Liu, Xinsheng, et al. "Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells." ACS applied materials & interfaces6.13: 10687-10695. (2014).
    [50] Takane, Daichi, et al. "Work function of bulk-insulating topological insulator Bi2–x Sb x Te3–y Se y." Applied Physics Letters 109.9: 091601. (2016).

    下載圖示 校內:2019-08-01公開
    校外:2019-09-01公開
    QR CODE