| 研究生: |
洪筠萱 Horng, Yun-Shuan |
|---|---|
| 論文名稱: |
電梯配重脫軌機制及耐震改善法研究 A Study of Elevator Counterweight Derailment Mechanism and Strengthening Methods |
| 指導教授: |
姚昭智
Yao, G. C. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 電梯 、配重 、導軌 、脫軌 |
| 外文關鍵詞: | Rail, Elevator, Counterweight, Derailment |
| 相關次數: | 點閱:122 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地震中電梯受損的主要兩種情況分別為配重框脫離軌道或配重脫出,及車廂導靴脫軌。由於導軌破壞為破壞種類之冠,因此本論文探討導軌的脫軌機制,以單跨距足尺寸導軌進行實驗導靴脫軌研究,探討5K導軌的受力變形行為及改善方法。
實驗包括面內實驗和面外實驗,以靜力加載和返復加載方式,以了解導軌受面內、面外力時的行為。改善方法包括5K導軌灌Epoxy加金鋼砂、更換8K導軌,以及改變導軌跨距為半跨5K導軌、半跨8K導軌四種。
研究發現國內習用耐震設計公式會低估5K導軌所能承受面內最大負載力,高估承受外力的位移量。由導靴與導軌互制行為實驗中發現,導軌脫軌主因,應為X向受撞側導軌變形量大於另一側導靴與導軌間的接合值,而形成另一側的面內脫軌。由返復載重實驗發現,返復加載振幅約等於導軌的降伏量時,卸載後產生殘留變形小於國內採用之安全值。
實驗求得國內現行5K導軌面內耐震地表加速度0.23g,比國內建築物耐震設計規範加速度係數地震甲區低、和地震乙區相等;8K導軌面內耐震地表加速度0.27g,比國內建築物耐震設計規範加速度係數地震甲區低、比地震乙區高。
改善方式研究中,5K導軌灌Epoxy加金鋼砂:在彈性階段剛度提升不大,在非彈性階段補強才發揮效用,導軌能承受較大外力。8K導軌剛度明顯提高:且8K導軌面內試驗不致有脫軌情形產生。半跨5K導軌:剛度提高十分明顯,但剛度太高易使導靴產生開裂情形。半跨8K導軌:剛度提高更為明顯,但剛度太高亦容易損壞導靴元件。
The vulnerability of elevator systems in the earthquake has two factors. They are derailed counterweight, fallen counter-weights, and a derailed car. The damage of side rails is the most significant cause of destruction in elevator systems. As a result, this paper discusses the derailment mechanism, and uses full-scale and one span experiments to study 5K rails' derailment deform behaviors and strengthening methods.
The experiment contents include in plane and out-of-plane ones. The experiment uses the dynamic H-actor provide force on the rail model, including dead load and sinusoidal excitation. So as to find in plane and out-of-plane load tests on 5K guide rails were performed. To verify the effectiveness of different strengthening methods, four types were tested: Epoxy reinforced 5K rails, the replacement of 8K rails, and shortened 5K and 8K rails' bracket distance.
The study conclusions find that the internal common formula of seismic designs underestimates 5K rails in plane's maximum load, and overestimates their displacement when suffer exterior force. Tests on the derailment mechanism lead to the conclusion that the rail been impacted upon in both directions will deform into plastic behavior but short of derailment. It is the other rail, only loaded in the Y-direction, will experience large separation from the guide shoes in the X-direction and leads to the derailment of the counterweight. From rails' cycle loading experiments, we found their afford high-displacement is about equal to 5K rails' elastic displacement, 5K rails' large residual displacement influences rails' safety as decreasing loading force. The internal common formula of seismic designs is unapplied.
From the result of experiments, 5K rails' seismic acceleration rate is 0.23g, lower than the internal common formula of seismic designs in Taiwan's first earthquake zone and equal to Taiwan's second earthquake zone. 8K rails' seismic acceleration rate is 0.27g, lower than the internal common formula of seismic designs in Taiwan's first earthquake zone, and higher than Taiwan's second earthquake zone.
Epoxy reinforced 5K rails:they can't strengthen rails' stiffness very well in elastic stage, but very well in inelastic stage. Epoxy reinforced 5K rails can bear more force. 8K rails:they strengthen obvious stiffness, and the balance of moving is good. Shortened 5K rails:their bracket span's distance strengthens stiffness very obviously. But shortened 5K rails' bracket span distance's stiffness is too high to rift the roller guide. Shortened 8K rails:they strengthens rails' stiffness more obviously, but its stiffness is either too high to break the roller guide.
參考文獻
1、Central Bureau of Standards (1999), Structures Standard for Elevators, CNS10594, Central Bureau of Standards, Department of Economics, ROC.
2、Elevator World (1972), Earthquakes and Elevator, Elevator World's 1972 Annual Study, Elevator World, AL, USA.
3、Finley, J.,D. Anderson, and L. Kwan (1996), Report on the Northridge earthquake impacts to hospital elevators, OSHPD, Sacramento, California.
4、Masek, P.(1990),"Current Problems in The Implementation of Nonstructural Earthquake Hazard Reduction Efforts",ATC29,USA.
5、Schiff, A.J (1988), The Whittier Narrows, California Earthquake of October , 1987- Response of Elevators, Earthquake Spectra, Vol. 4, No. 2, pp 367 -375.
6、Segal,F., A. Rutenberg, and R. Levy(1996),"Earthquake response of structure-elevator systems" J. Struct. Engrg., ASCE, 122(6), pp. 607-615.
7、Tzou, H.S. and A.J. Schiff (1988),"Structural Dynamics of Elevator Counterweight Systems and Evaluation of Passive Constraint" J. Struct. Engrg., ASCE, Vol. 114, No. 4, pp.783-803.
8、Tzou, H.S. and A.J. Schiff(1989),"Dynamics and Control of Elevators with Large Gaps and Rubber Dampers", J. Struct. Engrg., ASCE, Vol.115, No.11, pp.2753-2771.
9、Title 24 (1998), California Elevator Safety Construction Code, California Building Standards Commission.
10、Gates,William E., S.E. Dames and Moore(1998),"Lessons Learned from The Northridge Earthquake on The Vulnerability of Nonstructural Systems",ATC29-1,USA.
11、Yang, T. Y., H. Kullegowda, K. Kapania and A. J. Schiff (1983),"Dynamic Response Analysis of Elevator Model", J. Struct. Engrg., ASCE, Vol. 109, No. 5, pp.1194-1210.
12、Yao, G.C., and M.Y. Tseng (1995),"Floor Amplification Factor Analysis from Strong Motion Earthquake Acceleration Records", J.
of Architecture, AIROC, #14, pp.105 -116.
13、Yao, G.C. (2000), Seismic Capacity Analysis of Passenger Elevators in Taiwan, submitted to Earthquake Engineering and Engineering Seismology for review.
14、中井多喜雄,木村芳子,鄭振東,圖解式供電技術暨電梯設備。
15、中華民國升降機安全協會(1978),升降設備技術規範草案。
16、石開朗(1978),電梯安裝技術,台北市徐氏基金會。
17、永大電機(1992),電梯/電扶梯設計資料。
18、吳波、李惠(1995)、高層建築電梯平衡重體系的動力特性與地震反應分析,地震工程與工程震動,Vol. 15, No. 3, pp.88-97。
19、吳錦材(1997),升降機概論,崇友實業,台北市。
20、邱瑜燕(2002),結構強震數據之系統識別與應用研究, 成大建築研究所博士論文。
21、姚昭智、郭彥廷、洪靚瑜(2000),九二一集集大地震後續短期研究-嘉義市於不同地震強度中的電梯損害資料調查,成大建築系調查報告。
22、姚昭智、賴榮平、林其璋與洪李陵(2000),建築設備耐震規範條文與解說之研討,內政部建築研究所研究計畫成果報告MOIS891008。
23、楊宗裕、石開朗(1978),電梯維修保養,台北市徐氏基金會。
24、中國國家標準局CNS10594、CNS10595。