簡易檢索 / 詳目顯示

研究生: 黃君平
Huang, Chun-Ping
論文名稱: 利用固定化之活性鐵氧化物催化氧化降解與礦化酚及其應用之研究
Catalytic Degradation and Mineralization of Phenol by Immobilized Active Iron Oxides and Their Applications
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 134
中文關鍵詞: 固定化鐵氧化物降解礦化光-FentonFenton
外文關鍵詞: Immobilized iron oxide, Degradation, Mineralization, Photo-Fenton, Fenton, Phenol
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要致力於了解有機物(染料或酚)、氧化劑(過氧化氫)、催化劑(鐵氧化物或離子)與三者之間的相互作用的關係。首先,比較不同種類鐵氧化物對催化過氧化氫降解酚的反應性,找出具有較高催化活性的鐵氧化物;其次,研究氧化酚之後的中間產物(如醌類與草酸等)與鐵氧化物之間的作用(如鐵溶解)與反應(氧化還原),以及各種操作變因(pH值、溫度、反應物與氧化劑濃度等)對於催化氧化系統的影響;接著設計光反應器以增加礦化效能並增加鐵氧化物觸媒的使用壽命;最後,探討提出動力模式並提出系統的反應機構。
    在鐵氧化物對催化過氧化氫降解酚的反應性比較研究中顯示,固定化的鐵氧化物(稱為SiG1與SiG2)具有較高的催化效率(可100%降解水溶液中的酚)。當水溶液中含有酚的第一類氧化中間產物醌類(如catehcol與1,4-hydroquinone)時,SiG1與SiG2表面上的三價鐵可輕易的被還原成亞鐵離子溶解出來。本研究亦發現當溶液中的pH值為5時可視為一臨界條件,在此條件下catechol對於SiG1與SiG2的還原溶解效率最差,意即此時的catechol與SiG1之間的作用力最弱。鐵物質與醌類之間的氧化還原作用也意味著:當酚氧化降解時,不僅僅H2O2扮演氧化劑的角色,三價鐵亦是系統中的一種氧化劑,其會氧化酚的中間產物醌等。
    除了氧化降解酚之外,進一步應用SiG2催化H2O2成功的降解反應性偶氮性染料(reactive black B, RBB)。由變因討論的研究得到:熱效應(即溫度)對於過氧化氫的分解與反應性偶氮性染料的降解速率影響相當大,本研究亦提出兩階段擬一階動力模式來模擬RBB的降解動力行為。在沒有外加光源的條件下,水溶液中的酚可被氧化成中間產物(如草酸),但無法完全礦化(轉化成CO2與水,低於40% TOC移除率),且這些中間產物(如草酸)會導致鐵氧化物持續的釋出鐵離子物質至水溶液中,導致觸媒壽命的降低。
    為了改善上述缺點,本研究設計出一水流式光-流體化床反應器,以鐵氧化物催化過氧化氫來礦化酚並藉由紫外光(UV,波長365 nm)來減少釋出的鐵離子;研究成果證實酚可在此光-流體化床反應器系統當中成功地礦化(98% TOC移除率)且觸媒表面所釋出的鐵含量也大大的降低至5mg/L以下。此外,研究中觀察到一有趣的現象,即當使用的H2O2足以完全礦化酚時溶液中的pH變化可以作為礦化程度的指標,當pH從小於3.5提升至大於4.0以上時即表示礦化完成,如此一來可以方便判斷觀察酚礦化的程度,此研究成果應可應用到其他有機物的礦化,後續研究正在繼續探討中。以高級氧化處理水中有機物之程序,酸、鹼藥劑與H2O2是相當大的用藥成本,而本研究發現使用光-流體化床反應器礦化酚可大幅節省40%的H2O2與部分的酸、鹼用藥量,深具應用潛力。
    在光催化系統的反應機構探討部分,由最常見的中間產物草酸研究發現,光解SiG2與草酸的錯合物時,所得到的主產物為亞鐵離子與二氧化碳陰離子自由基。在此系統中草酸的分解會消耗水溶液中的溶氧與三價鐵物質。而應用UV/SiG-oxalate程序取代UV/SiG- H2O2程序來降解酚,可以將反應的起始pH條件從4提高至5。SiG1與SiG2已證實具有相當好的H2O2催化活性,本研究提出SiG1與SiG2在無光源條件下的催化H2O2降解酚與其氧化中間產物(草酸)造成鐵溶出的機制,而在有光源的條件下,進一步增加了SiG-oxalate的光解機制。草酸溶解鐵氧化物、catechol還原溶解鐵氧化物、分解H2O2與應用SiG2/H2O2降解染料之動力學模式與參數均在本研究中討論與求得。

    This study is aimed to better understand the interactions among organic compounds (azo-dye and phenol), oxidants (H2O2 and O2) and catalysts (iron oxides and iron ions). Firstly, the degradation of phenol by hydrogen peroxide in the presence of four kinds of iron oxides is compared to find the most active catalyst. Secondly, the interactions (dissolution of iron) and reactions (redox) between the oxidative intermediates of phenol (such as hydroquinones and oxalic acid) and iron oxide are investigated. Also, the operation parameters (such as pH, temperature, system loading and concentration of oxidants), which may affect the degradation efficiency of organic compounds, are also studied. Furthermore, the degradation and the mineralization performance were enhanced by a photo-reactor. Also, the recycle life of iron oxide catalyst was increased by the photo-reactor. Finally, kinetics and reasonable reaction mechanism of the system are proposed.
    Comparison study of the reactivity of iron oxides reveals that the immobilized iron oxides, namely SiG1 and SiG2, were efficient for the degradation of phenol in the presence of hydrogen peroxide (100% of phenol was degraded). SiG1 and SiG2 exhibited high reactivity for the reductive dissolution process in the presence of hydroquinones (catechol and 1,4-hydroquinone); a critical condition, in which the reductive dissolution was very inefficient, was found at solution pH 5. Furthermore, the redox reactions between iron species and hydroquinones implied that oxidants for the degradation of phenol were not only H2O2, hydroxyl radical, but also Fe(III) species. Thermal effect (temperature) is an important parameter for the decomposition of H2O2 and for the degradation of azo-dye reactive black B (RBB), and a two-stage rate law was proposed to describe the degradation kinetics of RBB. Moreover, the mineralization of phenol is quite inefficient in dark system (< 40% TOC removal efficiency) because the mineralization was retarded by oxalic acid. Also, iron species leaching from the surface of the immobilized iron oxides due to the accumulation of oxalic acid in the absence of irradiation.
    In order to improve the mineralization efficiency of phenol, a water-flow type photo-fluidized bed (photo-FBR) was designed to mineralize phenol and to minimize iron leaching. Successfully, the mineralization of phenol (about 98% TOC removal efficiency) and minimization of iron leaching (< 5 mg/L) were achieved in the photo-FBR. An interesting phenomenon was observed that the variation of solution pH also reflected the degree of mineralization. The result also means that the mineralization level of phenol in this system can be conveniently derived by the observation of solution pH variation. In addition to acidic and basic reagents, there is a savings of more than 40% of the H2O2 for the mineralization of phenol in photo-FBR. This also indicates that the cost of applied acid, base and H2O2 in industrial wastewater treatment can be dramatically reduced.
    The photolysis of SiG2-oxalate produces ferrous ions and carbon dioxide radical anions. The decomposition of oxalic acid consumes iron(III) species and dissolved oxygen. The application of UV/SiG-oxalate process is able to degrade phenol and to increase degradation efficiency at solution pH 5. The catalyses mechanisms of SiG1 and SiG2 for the degradation of phenol in the presence/absence light were proposed. The kinetics of iron dissolution by oxalic acid, iron reductive dissolution by catechol, H2O2 decomposition and RBB degradation by SiG2/H2O2 were investigated, also the kinetics parameters were obtained.

    論文摘要內容 I ABSTRACT III 致 謝 V LIST OF FIGURES VIII LIST OF TABLES XIV CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 THE ISSUES OF CONCERN 3 1.3 OBJECTIVES OF THIS STUDY 4 CHAPTER 2 LITERATURE REVIEW 5 2.1 FENTON REACTION 6 2.1.1 The Classical Free Radical Mechanism for Decomposition of H2O2 6 2.1.2 Speciation of Iron and Its Effects on Reactivity. Fe2+ and Fe3+ 9 2.1.3 Formation and Decomposition of Fe(III) complexes with H2O2 13 2.1.4 Influence of Inorganic Ions 15 2.1.5 Reactions of Inorganic and Organic Free Radicals with Iron Species 15 2.1.6 Reactions of Organic Molecules with Iron Species 18 2.1.7 Reaction of Organic Molecules with the Hydroxyl Radical 20 2.2 PHOTOASSISTED FENTON REACTION 20 2.2.1 Photolysis of Aquated Fe(III) Species 21 2.2.2 Photolysis of Fe(III)-OOH complexes 22 2.2.3 Photolysis of Fe(III) Complexes with Organic Ligands 22 2.3 FENTON REACTIONS USING IRON FROM SOLID SOURCES 25 2.3.1 Photo-assisted Heterogeneous Fenton System in the presence of Organic Ligands 26 2.4 PHOTOCHEMICAL REDUCTIVE DISSOLUTION OF IRON OXIDES 29 2.5 OXIDATION OF PHENOL AND ITS OXIDATIVE INTERMEDIATES 32 CHAPTER 3 EXPERIMENTAL METHODS 37 3.1 FRAMEWORK OF THE EXPERIMENT 37 3.2 CHEMICALS AND ANALYTICAL METHODS 38 3.2.1 Chemicals 38 3.2.2 Analytical methods 38 3.2.3 Analytical methods for iron oxide 39 3.3 PREPARATION OF THE IMMOBILIZED IRON OXIDES 42 3.3.1 New air-oxidized immobilized iron oxides (denoted as SiG1, SiG2) 42 3.3.2 H2O2-oxidized immobilized iron oxide (denoted as C1) 43 3.4 EXPERIMENTAL PROCEDURE AND EQUIPMENT SPECIFICATION 44 3.4.1 Non-irradiation system 44 3.4.2 Batch photo-Fluidized Bed Reactor 44 CHAPTER 4 RESULTS AND DISCUSSION 46 4.1 COMPARISON STUDY FOR THE REACTIVITIES OF IRON OXIDES 46 4.1.1 Characterization of iron oxides 46 4.1.2 Kinetics of H2O2 decomposition 55 4.1.3 Degradation of phenol and relative reactions 59 4.2 REDUCTIVE DISSOLUTION AND OXIDATIVE CATALYSIS OF SIG1 66 4.2.1 Reductive dissolution process 68 4.2.2 Catalytic oxidation of phenol and catechol in the Presence of H2O2 75 4.3 KINETICS AND TEMPERATURE EFFECT FOR THE CATALYTIC SYSTEM 80 4.3.1 Kinetics of H2O2 decomposition 81 4.3.2 Kinetics of Reactive Black B degradation 84 4.4 MINERALIZATION OF PHENOL IN A PHOTO-FLUIDIZED BED REACTOR 90 4.4.1 Degradation and mineralization of phenol 93 4.4.2 Various amount of H2O2 100 4.4.3 Ratio of catalyst weight and reaction volume 103 4.5 PHOTOLYSIS OF OXALIC ACID AND LIGHT-INDUCED DISSOLUTION OF IRON 106 4.5.1 pH effect on the photolysis of SiG2-oxalate 106 4.5.2 Degradation of phenol in UV/SiG2-oxalate system 112 CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 116 5.1 CONCLUSION 116 5.2 RECOMMENDATIONS 117 REFERENCE 118 VITA 132 PUBLICATION LIST 133

    Alhayek, N., Dore, M., 1990. Oxidation of phenols in water by hydrogen-peroxide on alumine supported iron. Water Res. 24, 973-982.
    Alnaizy, R., Akgerman, A., 2000. Advanced oxidation of phenolic compounds. Adv. Environ. Res. 4, 233-244.
    Anbar, M., Meyerstein, D., Neta, P.J., 1966. The reactivity of aromatic compounds toward hydroxyl radicals. J. Phys. Chem 70, 2660-2662.
    Andrianirinaharivelo, S., Mailhot, G., Bolte, M., 1995. Photodegradation of organic pollutants induced by complexation with transition metals (Fe3+ and Cu2+) present in nature waters. Solar Energy Mater. Solar Cells 38, 459-474.
    Arienzo, M., 1999. Oxidizing 2,4,6-trinitrotoluene with pyrite-H2O2 suspensions. Chemosphere 39, 1629-1638.
    Avdeef, A., Sofen, S.R., Bregante, T.L., Raymond, K.N., 1978. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc. 100, 5362-5370.
    Baes, C.F., Jr., Mesmer, R.E., 1979. The Hydrolysis of Cations. J. Wiley & Sons, New York, NY.
    Bali, U., Catalkaya, E.C., Sengul, F., 2003. Photochemical degradation and mineralization of phenol: A comparative study. J. Environ. Sci. Heal. A. 38, 2259-2275.
    Balmer, M.E., Sulzberger, B., 1999. Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate. Environ. Sci. Technol. 33, 2418-2424.
    Balzani, V., Carassiti, V., 1970. Photochemistry of Coordination Compounds. Academic Press, New York.
    Bandara, J., Morrison, C., Kiwi, J., Pulgarin, C., Peringer, P.J., 1996. Degradation/decoloration of concentrated solutions of orange II. Kinetics and quantum yield for sunlight induced reactions via Fenton type reagents. Photochem. Photobiol. A Chem. 99, 57-66.
    Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1949. Reactions of ferrous and ferric ions with hydrogen peroxide. Nature 163, 692-694.
    Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1951a. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.─The ferrous ion reaction. Trans. Faraday Soc. 47, 462-500.
    Barb, W.G., Baxendale, J.H., George, P., Hargrave, K.R., 1951b. Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.─The ferric ion reaction. Trans. Faraday Soc. 47, 591-616.
    Behar, B., Stein, G., 1986. Photochemical evolution of oxygen from certain aqueous solutions. Science 154, 1012.
    Benkelberg, H.J., Warneck, P., 1995. Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and SO4- quantum yields. J. Phys. Chem. 99, 5214-5221.
    Bielski, B.H.J., Cabelli, D.E., 1991. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solutions. Int. J. Radiat. Biol. 59, 291-391.
    Bishop, D.F., Stern, G., Fleischman, M., Marshall, L.S., 1968. Hydrogen peroxide catalytic oxidation of refractroy municipal waste waters. IEEC Proc. Design Dev. 7, 110-117.
    Bossmann, S.H., Oliveros, E., Gob, S., Siegwart, S., Dahlen, E.P., Payawan, L., Straub, M., Worner, M., Braun, A.M., 1998. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J. Phys. Chem. A 102, 5542-5550.
    Brand, N., Mailhot, G., Bolte, M., 1998. Degradation photoinduced by Fe(III): Method of alkylphenolethoxylates removal in water. Environ. Sci. Technol. 32.
    Brand, N., Mailhot, G., Bolte, M., 2000a. The interaction "light, Fe(III)" as a tool for pollutant removal in aqueous solution: Degradation of alcohol ethoxylates. Chemosphere 40, 395-401.
    Brand, N., Mailhot, G., Sarakha, M., Bolte, M., 2000b. Primary mechanism in the degradation of 4-octylphenol photoinduced by Fe(III) in water-acetonitrile solution. J. Photochem. Photobiol. A Chem. 135.
    Braun, A.M., Maurette, M.T., Oliveros, E., 1991. Photochemical Technology. Wiley & Sons, New York, 77-81.
    Buxton, G.V., Green, J.C., 1978. Reactions of some simple α- and β-hydroxyalkyl radicals with Cu2+ and Cu+ ions in aqueous solution. A radiation chemical study. J. Chem. Soc. Faraday Trans. 1, 697-714.
    Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (˙OH/˙O-) in aqueous solutions. J. Phys. Chem. Ref. Data 17, 513-886.
    Chen, R., Pignatello, J.J., 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ. Sci. Technol. 31, 2399-2406.
    Chen, R., Pignatello, J.J., 1999. Structure-activity study of electron-shuttle catalysis by quinones in the oxidation of aromatic compounds by the Fenton reaction. J. Adv. Oxidation Technol. 4, 447-453.
    Choi, J.S., Yoon, S.S., Jang, S.H., Ahn, W.S., 2006. Phenol hydroxylation using Fe-MCM-41 catalysts. Catal. Today 111, 280-287.
    Chou, S., Huang, C., 1999. Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere 38, 2719-2731.
    Christensen, H., Sehested, K., Logager, T., 1993. The reaction of hydrogen peroxide with Fe(II) ions at elevated temperature. Radiat. Phys. Chem. 41, 575-578.
    Cunningham, K.M., Goldberg, M.C., Weiner, E.R., 1988. Mechanisms for aqueous photolysis of adsorbed benzoate, oxalate, and succinate on iron oxyhydroxide (goethite) surfaces. Environ. Sci. Technol. 22, 1090-1097.
    De Laat, J., Gallard, H., 1999. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol. 33, 2726-2732.
    De Laat, J., Gallard, H., Ancelin, S., Legube, B., 1999. Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(iii)/H2O2/UV and Fe(II) or Fe(III)/H2O2. Chemosphere 39, 2693-2706.
    Deng, Y.W., Stumm, W., 1994. Reactivity of aquatic iron(III) oxyhydroxides implications for redox cycling of iron in natural-waters. Appl. Geochem. 9, 23-36.
    Devlin, H.R., Harris, I.J., 1984. Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind. Eng. Chem. Fundamen. 23, 387-392.
    Du, Y., Zhou, M., Lei, L., 2006. Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. J. Hazard. Mater. 136, 859-865.
    Dzombak, D.A., Morel, F.M.M., 1990. Surface Complexation Modeling; Hydrous Ferric Oxide, Wiley, New York, NY.
    Eisenhauer, H.R., 1964. Oxidation of phenolic wastes. J. Water Pollut. Contr. Fed. 36, 1116-1128.
    Evans, M.G., George, P., Uri, N., 1949. The [Fe(OH)]+2 and [Fe(O2H)]+2 complexes. Tans. Faraday Soc. 34, 230-234.
    Faust, B.C., Hoffmann, M.R., 1986. Photoinduced reductive dissolution of α-Fe2O3 by bisulfite. Environ. Sci. Technol. 20, 943-948.
    Faust, B.C., Hoigen, J., 1990. Photolysis of Fe(III)-hydroxyl complexes as sources of OH radicals in clouds, fog, and rain. Atoms. Environ. 24A, 79-89.
    Feng, J.Y., Hu, X.J., Yue, P.L., 2004. Discoloration and mineralization of orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38, 5773-5778.
    Fenton, H.J.H., 1894. Oxidation of tartaric in presence of iron. J. Chem. Soc., Trans. 65, 899-911.
    Francis, K.C., Cummins, D., Oakes, J., 1985. Kinetic and structural investigations of [Fe(III)(edta)]-[edta = ethylenediaminetetraacetate(4-)] catalysed decomposition of hydrogen peroxide. J. Chem. Soc. Dalton Trans., 493-501.
    Gallard, H., De Laat, J., 2000. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 34, 3107-3116.
    Gallard, H., De Laat, J., 2001. Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/H2O2. Evidnece of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III). Chemosphere 42, 405-413.
    Gallard, H., De Laat, J., Legube, B., 1999. Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions Water Res. 33, 2929-2936.
    Gonzalez-Davila, M., Santana-Cassiano, J.M., Millero, F.J., 2005. The oxidation of iron(II) nanomolar with H2O2 in seawater. Geochim. Cosmochim. Acta 69, 83-93.
    Graf, E., Mahoney, J.R., Bryant, R.G., Eaton, J.W., 1984. Iron-catalyzed hydroxyl radical formation. J. Biol. Chem. 259, 3620-3624.
    Haber, F., Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Roy. Soc. A. 134, 332-351.
    Hamilton, G.A., Hanifin, J.W., Friedman, J.P., 1966. The hydroxylation of aromatic compounds by hydrogen peroxide in the presence of catalytic amounts of ferric Ion and catechol. product studies, mechanism, and relation to some enzymic reaction. J. Am. Chem. Soc. 88, 5269-5272.
    Hatchard, G.G., Parker, C.A., 1956. A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc. Roy. Soc. A235, 518-536.
    Hislop, K.A., Bolton, J.R., 1999. The photochemical generation of hydroxyl radicals in the UV-vis/Ferrioxalate/H2O2 system. Environ. Sci. Technol. 33, 3119-3126.
    Hsueh, C.L., Huang, Y.H., Chen, C.Y., 2006a. Novel activated alumina-supported iron oxide-composite as a heterogeneous catalyst for photooxidative degradation of reactive black 5. J. Hazard. Mater. 129, 228-233.
    Hsueh, C.L., Huang, Y.H., Wang, C.C., Chen, C.Y., 2006b. Photoassisted Fenton degradation of nonbiodegradable azo-dye (reactive black 5) over a novel supported iron oxide catalyst at neutral pH. J. Mol. Catal. A: Chem. 245, 78-86.
    http://www.allen.rad.nd.edu/, University of Notre Dame Radiation Laboratory, Radiation Chemistry Data Center.
    Huang, C.P., Huang, Y.H., 2008. Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Appl. Catal. A: Gen. 346, 140-148.
    Huang, Y.-H., Tsai, S.-T., Huang, Y.-F., Chen, C.-Y., 2007. Degradation of commercial azo dye reactive Black B in photo/ferrioxalate system. Journal of Hazardous Materials 140, 382-388.
    Huang, Y.H., Cho, L.T., Chen, C.Y., 2006a. Method for Removing Ferrous ion in Water Solution. Republic of China, Taiwan Patent 200616902.
    Huang, Y.H., Cho, L.T., Chen, C.Y., 2006b. Method for removing rerrous ion in water solution. Republic of China, Taiwan Patent 200616902.
    Huang, Y.H., Huang, G.H., Chou, S.S., You, H.S., Perng, S.H., 2000. Chemical oxidation of effluent water with reduced production of sludge is carried out using ferrous ions and hydrogen Peroxide. The Netherlands patent 1009661.
    Huston, P.L., Pignatello, J.J., 1996. Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding Mineralization by the Photo-Fenton Reaction. Environ. Sci. Technol. 30, 3457-3463.
    Iwahashi, H., Ishii, T., Sugata, R., Kido, R., 1990. The effects of caffeic and its related catechols on hydroxyl radical formation by 3-hydroxyanthramilic acid, ferric chloride, and hydrogen peroxide. Arch. Biochem. Biophys 276, 242-247.
    Johnson, G.K., Bauman, J.E., Jr, 1978. Equilibrium constants for the aquated iron(II) cation. Inorg. Chem. 17, 2774-2779.
    Joo, S.H., Feitz, A.J., Sedlak, D.L., Waite, T.D., 2005. Quantification of the Oxidizing Capacity of Nanoparticulate Zero-Valent Iron. Environ. Sci. Technol. 39, 1263-1268.
    Kavitha, V., Palanivelu, K., 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55, 1235-1243.
    Kawaguchi, H., Inagaki, A., 1994. Kinetics of ferric ion promoted photodecomposition of 2-chlorophenol. Chemosphere 28, 57-62.
    Kong, S.H., Watts, R., Choi, J.H., 1998. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37, 1473-1482.
    Koppenol, W.H., Butler, J., van Leeuwne, J.W., 1978. The Haber─Weiss cycle. Photochem. Photobiol. 28, 655-660.
    Kwan, W.P., Voelker, B.M., 2002. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467-1476.
    Kwan, W.P., Voelker, B.M., 2003. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ. Sci. Technol. 37, 1150-1158.
    Landa, E.R., Gast, R.G., 1973. Evaluation of crystallinity in hydrated ferric oxides. Clay. Clay Miner. 21, 121-130.
    Langford, C.H., Carey, J.H., 1975. The charge transfer photochemistry of the hexaaquoiron(III) ion, the chloropentaaquoiron(III) ion, and the μ-dihydroxy dimer explored with tert-butyl alcohol scavenger. Can. J. Chem. 53, 2430-2435.
    Larson, R.A., Schlauch, M.B., Marley, K.A., 1991. Ferric ions promoted photodecomposition of triazines. J. Agric. Food Chem. 39, 2057-2062.
    Leland, J.K., Bard, A.J., 1987. Photochemistry of colloidal semiconductinf iron oxide polymorphs. J. Phys. Chem 91, 5076-5083.
    Lewis, T.J., Richards, D.H., Salter, D.A., 1963. Peroxy-complexes of inorganic ions in hydrogen peroxide-water mixtures. Part I. Decomposition by ferric ions. J. Chem. Soc., 2434-2446.
    Li, Y.S., Liu, C.C., Fang, Y.Y., 1999. Decolorization of dye wastewater by hydrogen peroxide in the presence of basic oxygen furnace slag. J. Environ. Sci. Heal. A. 34, 1205-1221.
    Lindsay, W.L., 1979. Chemical Equilibria in Soil. Wiley, New York, 128-149.
    Liou, M.J., Lu, M.C., 2008. Catalytic degradation of explosives with goethite and hydrogen peroxide. J. Hazard. Mater. 151, 540-546.
    Litter, M.I., Blesa, M.A., 1988. Photodissolution of iron oxides I. Maghemite in EDTA solutions. J. Colloid Interface Sci. 125, 679-687.
    Liu, C., Shan, Y., Yang, X., Ye, X., Wu, Y., 1997. Iron(II)-8-quinolinol/MCM-41-catalyzed phenol hydroxylation and reaction mechanism. J. Catal. 168, 35-41.
    Lu, M.C., 2000. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere 40, 125-130.
    Lu, Y.W., Huang, C.P., Huang, Y.H., Lin, C.P., Chen, H.T., 2008. Effect of pH on the oxidation of ferrous ion and immobilization technology of iron hydr(oxide) in fluidized bed reactor. Sep. Sci. Technol. 43, 1632-1641.
    Lucking, F., Koser, H., Jank, M., Ritter, A., 1998. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Res. 32, 2607-2614.
    Mackay, A.A., Pignatello, J.J., 2001. Application of Fenton-based reactions for treating dye wastewaters: Stability of sulfonated azo dyes in the presence of Fe(III). Helvet. Chim. Acta 84, 2589-2600.
    Mailhot, G., Astruc, M., Bolte, M., 1999. Degradation of tributyltin chloride in water photoinduced by iron(III). Organomet. Chem. 13, 53-61.
    Mansano-Weiss, C., Cohen, H., Meyerstein, D., 2002. Reactions of peroxyl radicals with Fe(H2O)62+. J. Inorg. Biochem. 91, 199-204.
    Martinez, F., Calleja, G., Melero, J.A., Molina, R., 2007. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol. Appl. Catal. B: Environ. 70, 452-460.
    Mazellier, P., Mailhot, G., Bolte, M., 1997. Photochemical behavior of the iron(III)/2,6-dimethylphenol system. N. J. Chem. 21, 389-397.
    Mazellier, P., Sarakha, M., Bolte, M., 1999. Primary mechanism for the iron(III) photoinduced degradation of 4-chlorophenol in aqueous solution. N. J. Chem. 23, 133-135.
    Mazellier, P., Sulzberger, B., 2001. Diuron degradation in irradiated, heterogeneous iron/oxalate systems: the rate-determining step. Environ. Sci. Technol. 35, 3314-3320.
    Merz, J.H., Waters, W.A., 1947. Electron-transfer reactions. A. The mechanism of oxidation of alcohols with Fenton reagent. Disc. Faraday Soc. 2, 179-188.
    Mesmer, R.E., 1971. Hydrolysis of iron(2+) in dilute chloride. Inorg. Chem. 10, 857-858.
    Miles, C.J., Brezonik, P.L., 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Environ. Sci. Technol. 15, 1089-1095.
    Miller, C.M., Valentine, R.L., 1995. Hydrogen-peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res. 29, 2353-2359.
    Miller, C.M., Valentine, R.L., 1999. Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Res. 33, 2805-2816.
    Millero, F.J., Sotolongo, S., 1989. The oxidation of Fe(II) with H2O2 in seawater. Geochim. Cosmochim. Acta 53, 1867-1873.
    Naka, D., Kim, D., Strathmann, T.J., 2006. Abiotic reduction of nitroaromatic compounds by aqueous iron(II)-catechol complexes. Environ. Sci. Technol. 40, 3006-3012.
    Neamtu, M., Frimmel, F.H., 2006. Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells. Water Res. 40, 3745-3750.
    Neta, P., Grodkowski, J., Ross, A.B., 1996. Rate Constants for Reactions of Aliphatic Carbon-Centered Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 25, 709-1050.
    Noorjahan, M., Durga Kumari, V., Subrahmanyam, M., Panda, L., 2005. Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl. Catal. B: Environ. 57, 291-298.
    Nunez, L., Garcia-Hortal, J.A., Torrades, F., 2007. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dye Pigment 75, 647-652.
    Panias, D., Taxiarchou, M., Paspaliaris, I., Kontopoulos, A., 1996. Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy 42, 257-265.
    Park, J.S.B., Wood, P.M., Gilbert, B.C., Whitwood, A.C., 1997. A kinetic and ESR investigation of iron(II) oxalate oxidation by hydrogen peroxide and dioxygen as a source of hydroxy radicals. Free Radical Res. 27, 447-458.
    Pehkonen, S.O., Siefert, R.L., S, W., Hoffmann, M.R., 1993. Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. Environ. Sci. Technol. 27, 2056-2062.
    Pignatello, J.J., 1992. Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944-951.
    Pignatello, J.J., Liu, D., Huston, P., 1999. Evidence for an additional oxidant in the photoassisted Fenton reaction. Environ. Sci. Technol. 33, 1832-1839.
    Pignatello, J.J., Oliveros, E., Mackay, A., 2006. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36, 1-84.
    Pohl, K., Weighardt, K., Kaim, W., Steenken, S., 1988. Redox reactivity of bis(1,4,7-triazacyclononane)iron(II/III) complexes in alkaline solution and characterization of a deprotonated species: Amidoiron(III) vs aminyliron(II) ground-state formulation. EPR, kinetic, pulse radiolysis, and laser photolysis study. Inorg. Chem. 27, 440-447.
    Rahhal, S., Richter, H.W., 1988. Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N,N,N',N",N"-pentaacetate. J. Am. Chem. Soc. 110, 3126-3133.
    Richens, D.T., 2005. Ligand substitution reactions at inorganic centers. Chem. Rev. 105, 1961-2002.
    Rigg, T., Taylor, W., Weiss, J., 1954. The rate constant of the reaction between hydrogen peroxide and ferrous ions. J. Chem. Phys 22, 575-577.
    Rodriguez, E., Mimbrero, M., Masa, F.J., Beltran, F.J., 2007. Homogeneous iron-catalyzed photochemical degradation of muconic acid in water. Water Res. 41, 1325-1333.
    Roland, S., Ingbert, S., Hans-Henning, S., 1997. Fluorometric determination of low concentration of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment. Water Res. 31, 1371-1378.
    Ronco, S.E., Aymonino, P.J., 1987. Kinetics of the thermal and photochemical decomposition of aquapentacyanoferrate(III) in aqueous solution. Transition Met. Chem. 12, 174-178.
    Rose, A.L., Waite, T.D., 2002. Kinetic Model for Fe(II) Oxidation in Seawater in the Absence and Presence of Natural Organic Matter. Environ. Sci. Technol. 36, 433-444.
    Rosen, G.M., Rauckman, E.J., 1980. Spin trapping of the primary radical involved in the activation of the carcinogen n-hydroxy-2-acetylaminofluorene by cumene hydroperoxide-hematin. Mol. Pharmacol. 17, 233-238.
    Ruppert, G., Bauer, R., Heisler, G., 1993. The photo-Fenton reaction-an effective photochemical wastewater treatment process. J. Photochem. Photobiol. A Chem. 73, 75-78.
    Rush, J.D., Koppenol, W.H., 1986. Oxidizing intermediates in the reduction of ferrous EDTA with hydrogen peroxide. J. Biol. Chem. 261, 6730-6733.
    Safarzadeh-Amiri, A., Bolton, J.R., Cater, S.R., 1996. The use of iron in advanced oxidation technologies. J. Adv. Oxidation Technol. 1, 18-26.
    Safarzadeh-Amiri, A., Bolton, J.R., Cater, S.R., 1997. Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res. 31, 787-798.
    Salam, M.A., Raza, M.A., 1971. Hydrolysis of aquocobalt(II) in perchlorate media. Chem. & Ind. 22, 601.
    Sanchez, P., Galvez, N., Colacio, E., Mirnones, E., Dominguez-Vera, J.M., 2005. Catechol releases iron(III) from ferritin by direct chelation without iron(II) production. Dalton T., 811-813.
    Sawyer, D.T., Valentine, J.S., 1981. How super is superoxide. Acc. Chem. Res. 14, 393-400.
    Schindler, P.W., Stumm, W., 1987. The surface chemistry of oxides, hydroxides, and oxide minerals In: W. Stumm (Editor), Aquatic Surface Chemistry, Wiley, New York, NY, pp. 83-110.
    Schwertmann, U., Cornell, R.M., 2000. Iron Oxides in the Laboratory. Iron Oxides in the Laboratory. Wiley-VCH Publishers, New York, p. 103.
    Sedlak, D.L., Hoigen, J., 1993. The role of copper and oxalate in the redox cycling of iron in atmospheric waters. J. Atmos. Environ. 27A, 2173-2185.
    Sever, M.J., Wilker, J.J., 2004. Visible absorption spectra of metal-catecholate and metal-tironate complexes. Dalton T., 1061-1072.
    Shi, F., Tse, M.K., Pohl, M.-M., Radnik, J., Bruckner, A., Zhang, S., Beller, M., 2008. Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. J. Mol. Catal. A: Chem. 292, 28-35.
    Siffert, C., Sulzberger, B., 1991. Light-induced dissolution of hematite in the presence of oxalate: A case study. Langmuir 7, 1627-1634.
    Sima, J., Makanova, J., 1997. Photochemistry of iron(III) complexes. Coord. Chem. Rev. 160, 161-189.
    Smith, M.B., March, J., 2001. March's Advanced Organic Chemistry. 5th ed. J. Wiley & Sons, New York.
    Stuglik, Z., Zagorski, Z.P., 1981. Pulse radiolysis of neutral iron(II) solutions: oxidation of ferrous ions by OH radicals. Radiat. Phys. Chem. 17, 229-233.
    Stumm, W., Lee, G.F., 1961. Oxygenation of Ferrous Iron. Ind. Eng. Chem. 53, 143-146.
    Sulzberger, B., Canonica, S., Egli, T., Giger, W., Klausen, J., von Gunten, U., 1997. Oxidative transformations of contaminants in natural and in technical systems. Chimia 51, 900-907.
    Sulzberger, B., Laubscher, H., 1995. Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution. Marine Chem. 50, 103-115.
    Sun, J.-H., Sun, S.-P., Wang, G.-L., Qiao, L.-P., 2007. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dye Pigment 74, 647-652.
    Sun, Y., Pignatello, J.J., 1993. Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV. Environ. Sci. Technol. 27, 304-310.
    Suter, D., Banwart, S., Stumm, W., 1991. Dissolution of hydrous iron(III) oxides by reductive mechanisms. Langmuir 7, 809-813.
    Sweeton, F.H., Baes, C.F., Jr., 1970. The solubility of magnetite and hydrolysis of ferrous ion in aqueous solutions at elevated temperatures. J. Chem. Thermodynamics 2.
    Sylva, R.N., 1972. The hydrolysis of iron(III). Rev. Pure Appl. Chem. 22.
    Takemura, Y., Seno-o, K., Mukai, T., Suzzuki, M., 1994. Decomposing organic chlorine compounds in dry cleaning wastewater by Fenton's reaction on recticulated iron. Water. Sci. Technol. 30, 129-137.
    Tamura, H., Goto, K., Yotsuyanagi, T., Nagayama, M., 1974. Spectrophotometric determination of iron (III) with 1,10-phenanthroline in the presence of large amounts of iron (III). Talanta 21, 314-318.
    Tang, W.Z., Chen, R.Z., 1996. Decolorization kinetics and mechanisms of commercial dyes by H2O2/iron powder system. Chemosphere 32, 947-958.
    Tarr, M.A., 2003. Chemical degradation methods for waste and pollutants. In Environmental Science Pollution Control Series 26 (Chemical Degradation Methods for Wastes and Pollutants), 165-200.
    Tokumura, M., Ohta, A., Znad, H.T., Kawase, Y., 2006. UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Res. 40, 3775-3784.
    Tokumura, M., Sekine, M., Yoshinari, M., Znad, H.T., Kawase, Y., 2007. Photo-Fenton process for excess sludge disintegration. Process Biochemistry 42, 627-633.
    Valentine, R.L., Wang, H.C.A., 1998. Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. J. Environ. Eng.-ASCE 124, 31-38.
    Van der Zee, J., Krootjes, B.B.H., Chignell, C.F., Dubbelman, T.M.A.R., Van Steveninck, J., 1993. Hydroxyl radical generation by a light dependent Fenton reaction. Free Radical Biol. Med. 14, 105-113.
    Voelker, B.M., Morel, F.M.M., Sulzberger, B., 1997. Iron redox cycling in surface waters: effects of humic substances and light. Environ. Sci. Technol. 31, 1004-1011.
    Voelker, B.M., Sulzberger, B., 1996. Effects of fulvic acid on Fe(II) oxidation by hydrogen peroxide. Environ. Sci. Technol. 30, 1106-1114.
    Von Sonntag, C., Schuchmann, H.P., 1997. Peroxyl radicals in aqueous solutions. In Peroxyl Radicals. Z. B. Alfassi, ed., John Wiley and Sons, New York, 173-234.
    Wahid, P.A., Kamalam, N.V., 1993. Reductive dissolution of crystalline and amorphous Fe(III) oxides by microoganisms in submerged soil. Biol. Fertil. Soils 15, 144-148.
    Waite, T.D., 1985. Abstract of Papers. 190th National Meeting of the American Chemical Society, Chicago, IL; American Chemical Society: Washington, DC, 1985; GEOC0067.
    Waite, T.D., 2002. Challenges and opportunities in the use of iron in water and wastewater treatment. Re/Views in Environmental Science and Bio/Technology 1, 9-15.
    Waite, T.D., Morel, F.M.M., 1984a. Photoreductive dissolution of colloidal iron oxide: effect of citrate. J. Colloid Interface Sci. 102, 121-137.
    Waite, T.D., Morel, F.M.M., 1984b. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18, 860-866.
    Walling, C., 1975. Fenton's reagent revisited. Acc. Chem. Res. 8, 125-131.
    Walling, C., 1998. Intermediates in the Reactions of Fenton Type Reagents. Acc. Chem. Res. 31, 155-157.
    Walling, C., Goosen, A., 1973. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J. Am. Chem. Soc. 95, 2987-2991.
    Wang, D., Liu, Z., Liu, F., Ai, X., Zhang, X., Cao, Y., Yu, J., Wu, T., Bai, Y., Li, T., Tang, X., 1998. Fe2O3/macroporous resin nanocomposites: some novel highly efficient catalysts for hydroxylation of phenol with H2O2. Appl. Catal. A: Gen. 174, 25-32.
    Wanger, R., Ruch, W., 1984. Determination of hydrogen peroxide and other peroxo compounds. Z. Wasser-Abwasser-Forsch. 17, 262-267.
    Wehrli, B., Wieland, E., Furrer, G., 1990. Chemical mechanisms in the dissolution kinetics of minerals-the aspect of active-sites. Aquat. Sci. 52, 3-31.
    Wells, C.F., Salam, M.A., 1965. Hydrolysis of ferrous ions: A kinetic method for determination of the Fe(II) species. Nature 205, 690-692.
    Wells, C.F., Salam, M.A., 1967. Complex formation between iron(II) and inorganic anions. Part I. Effect of simple and complex halide ions on the reaction of Fe(II) + H2O2 reaction. Trans. Faraday Soc. 63, 620-629.
    Wells, C.F., Salam, M.A., 1968a. Complex formation between iron(II) and inorganic anions. Part II. The effect of oxyanions on the reaction of iron(II) with hydrogen peroxide. J. Chem. Soc. A, 308-315.
    Wells, C.F., Salam, M.A., 1968b. The effect of pH on the kinetics of the reaction of iron(II) with hydrogen peroxide in perchlorate media. J. Chem. Soc. A, 24-29.
    Wells, C.F., Salam, M.A., 1969. The mechanism of the hydrolysis of aquomanganese(II) ion in perchlorate media. J. Inorg. Nucl. Chem. 31, 1083-1089.
    Wu, C., Liu, X., Wei, D., Fan, J., Wang, L., 2001. Photosonochemical degradation of Phenol in water. Water Res. 35, 3927-3933.
    Zazo, J.A., Casas, J.A., Mohedano, A.F., Gilarranz, M.A., Rodriguez, J.J., 2005. Chemical pathway and kinetics of phenol oxidation by Fenton's reagent. Environ. Sci. Technol. 39, 9295-9302.
    Zepp, R.G., Faust, B.C., Hoigne, J., 1992. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 26, 313-319.
    Zhang, Z., Xiang, Q., Glatt, H., Platt, K.L., Goldstein, B.D., Witz, G., 1995. Studies on pathways of ring opening of benzene in a Fenton system. Free Radical Biol. Med. 18, 411-419.
    Zuo, Y., Hoigne, J., 1992. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 26, 1014-1022.

    下載圖示 校內:2011-06-12公開
    校外:2011-06-12公開
    QR CODE