| 研究生: |
林重言 Lin, Chung-Yan |
|---|---|
| 論文名稱: |
離子液體BMIBF4於EC、PC、THF與NMP中導電性之分子模擬 Molecular simulations of the conductivities of ionic liquid BMIBF4 in EC,PC,THFand NMP |
| 指導教授: |
施良垣
Shy, Liang-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 導電性之分子模擬 |
| 外文關鍵詞: | molecular simulations |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇以分子動力方法模擬離子液體1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4)分別與稀釋劑EC、PC、NMP與THF混合後之擴散及導電性質。本篇以微觀角度探討稀釋劑對BMI+與BF4-離子之作用力之影響,其結果並且與本實驗室同學之實驗結果比對。
結果顯示,模擬之擴散係數與比導電度值均隨著稀釋劑含量之增加而上升,且與實驗值相當接近。自由陽離子與陰離子之比率也隨著稀釋劑含量之增加而升高,其中以稀釋劑為EC時之值最大,這可能是因為其介電常數值最大所致。BMI+離子周圍之BF4-離子配位數隨著稀釋劑含量之增加而減少,但稀釋劑配位數則遞增。
模擬也發現,不僅稀釋劑之碳氧鍵之氧原子會與BMI+環上之氫原子產生氫鍵,其氫原子也會與BF4-之F原子產生氫鍵,此結果與NMR實驗相符。
Molecular dynamics simulation method has been used to study the diffusion and conductivity properties for the mixtures of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) with various diluents such as propylene carbonate (PC),ethylene carbonate (EC), N-methylpyrrolidone (NMP) and tetrahydrofuran (THF). The effect of diluents on the interactions between BMI+ and BF4- ions were explored from a microscopic point of view, and the result were examined against with those determined experimentally by the colleage of this laboratory.
The simulated diffusion coefficients and specified conductivities both increase with the diluent content, and agree quite well with experiments. The fractions of free cation and anion also increase with the diluent content, where the highest fraction is found as EC acts as diluent, owing to its high dielectric constant. The number of coordinating BF4- aions around BMI+ ions decreases with the addition of diluent, but the number of coordinating diluent increases instead.
It is als found that not only the hydrogen atom of imidazolium ring, but also the fluorine atom of BF4- aion forms hydrogen bond with diluent, which is in accord with the NMR result.
1. Walden, P. Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800.
2. Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg. Chem., 1982, 21, 1263.
3. Wilkes, J. S.; Zaworotko, M. J.; J. Chem. Soc., Chem. Commun., 1912,965,
4. Hesse, H.; Meier, M.; Zeeh. B.; Spektroskopische Methoden in der organischen Chemie, 2nd ed., 1984.
5. Bonhte, P.; Dias, A.-P.; Papageogiou, N.; Kalyanasundaram, K.; and Grtzel, M.; Inorg. Chem., 1996, 35, 1168.
6. Huang, J. F.; Chen, P. Y.; Sun, I. W. and Wang, S. P.; Inorg. Chim. Acta, 2001, 320, 7.
7. McEwen, A. B.; McDevitt, S. F.; andKoch, V. R.; J. Electrochem. Soc., 1997, 144, L84.
8. Nishida, T.; Tashiro Y.; and Yamamoto, M.; J. Fluorine. Chem. 2003,120,135.
9. “Discover User Guide”, version 4.0. San Diego: Biosym Technologies, 1996.
10. Theodoroa, D. N.; Suter, U. W. Macromolecules, 1985, 18, 1206.
11. Bsskir, J. N.; Suter, U. W. Macromolecules, 1988, 21, 1877.
12. Iglesias, T. P.; Fernndez, J. P. J. Chem. Thermodynamics, 2001, 33, 1375.
13. Fricke, H. J. Phys. Chem., 1953, 57, 934.
14. Lin Z.,Hung S., W.,J. Phys. Chem. B 2004,108,12978.
15. 劉寬仁,國立成功大學化學研究所碩士論文,2007.
16. Sun. I.,Wang S.P.,Inorganica Chimica Acta,2001,320,7