簡易檢索 / 詳目顯示

研究生: 吳心韜
Wu, Hsin-Tao
論文名稱: 臺灣東北角海岸萊萊地區中新世火成岩脈地球化學特徵及成因
Geochemical Characteristics and Petrogenesis of the Miocene Igneous Dikes in Lailai, northeastern coast of Taiwan
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 102
中文關鍵詞: 鹼性玄武岩煌斑岩板內玄武岩同位素地球化學地殼混染
外文關鍵詞: Alkaline Basalt, Lamprophyric Rock, Intraplate Basalt, Geochemistry, Isotopes, Crustal Contamination
相關次數: 點閱:182下載:55
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在臺灣東北角海岸的萊萊地區發現了一系列中新世火成岩脈,他們在早期文獻中常被稱為“煌斑岩”。然而,我們的樣品顯示角閃石僅作為副礦物相出現,而黑雲母則是角閃石的變質產物;此外樣品的MgO和K2O含量分別小於8%和1.8%,K2O/Na2O比值小於1,這些特徵與典型的煌斑岩不符,但與高度演化的鹼性玄武岩相似。
    全岩地球化學特徵上,K2O和Rb含量與L.O.I.含量(5–11%)之間的負相關表明了高度的後期蝕變作用。在LREE vs. HREE圖中,高REE樣本組與低REE樣本組共同定義了一個連貫的趨勢,他們分別被稱為A組和B組樣品;偏離這一趨勢的是C組樣品,其趨勢指向較低濃度的HREE。總體而言,樣本MgO含量從8.44%到5.24%不等,反映了岩漿經過分離結晶作用的演化,這一點從TiO2、Al2O3、Fe2O3t、Na2O和P2O5濃度隨MgO含量降低而增加的趨勢中得以證明。
    在87Rb/86Sr-87Sr/86Sr圖中,A組樣品形成了一個逆趨勢,位於B組和C組樣品定義的逆趨勢下方,此現象表明這些樣品至少涉及了兩種端元的混合,低87Sr/86Sr和高87Sr/86Sr端元分別被推測為地函和地殼成分。然而地殼成分不能是萊萊岩脈的圍岩,因為其Rb/Sr的高比值推翻了淺層地殼混染的可能性。由臺灣中新世火成岩的207Pb/204Pb-206Pb/204Pb和208Pb/204Pb-206Pb/204Pb圖可以觀察到,萊萊岩脈和澎湖玄武岩展現出獨特的負207Pb/204Pb-206Pb/204Pb斜率,我們研判兩者來自相同的地函源區,並受到一個由1%俯衝沉積物以及99%貧化地函組成的地殼組分的影響。這一結論得到了二元混合模型和同位素圖的支持,確認了源區混染在萊萊岩脈生成過程中的重要作用。

    A set of Miocene igneous dikes occurs in the Lailai area at the northeastern coast of Taiwan. These dikes have been referred to as "lamprophyric rock" in some earlier documents. However, our samples reveal that amphibole is present only as an accessory mineral, and biotite appears as an alteration product of amphibole. Additionally, the samples have MgO and K2O concentrations of less than 8% and 1.8%, respectively, with K2O/Na2O ratios below 1. These features are inconsistent with those of typical lamprophyres but resemble highly evolved alkalic basalts.
    As a whole, the inverse correlation between K2O and Rb abundances with L.O.I. content (5–14%) indicates high extent alteration. In the LREE versus HREE plot, a group of high REE samples together with another group of low REE samples define a coherent trend. They are referred to as the Group A and B samples, respectively. Deviating from the general trend toward lower HREE are the Group C samples. The MgO content varies from 8.44 to 5.24 %, typical of magma evolution through fractional crystallization as indicated by the general increase of TiO2, Al2O3, Fe2O3t, Na2O, and P2O5 concentrations with decreasing MgO abundance.
    In the 87Rb/86Sr-87Sr/86Sr plot, Group A samples form an inverse trend laying below that defined by Groups B and C, indicating the involvement of at least two components in these samples. The low and high 87Sr/86Sr end-members are inferred to be mantle and crustal components, respectively. The crustal component, however, cannot be the wall rocks of the dikes for their high 87Rb/86Sr values, arguing against shallow level crustal contamination. From the 207Pb/204Pb-206Pb/204Pb and 208Pb/204Pb-206Pb/204Pb plots of Miocene igneous rocks in Taiwan, it can be observed that the Lailai dikes and Penghu Island basalts exhibit unique negative 207Pb/204Pb-206Pb/204Pb slopes. We infer that both originated from the same mantle source and were influenced by a mixed crustal component composed of 1% subducted sediments and 99% depleted mantle. This conclusion is supported by binary mixing models and isotope diagrams, confirming the high role of source contamination in the formation of the Lailai dike.

    摘 要 i Abstract ii 誌 謝 iv Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Lamprophyre 2 1.2 Literature Review 4 1.3 Miocene Volcanic Activity in Western Taiwan 5 1.4 Mantle Probes:Igneous Rocks 8 1.5 Research Objectives 10 Chapter 2 Geological Setting 11 2.1 Local Geology 11 2.2 Field Observations 14 2.3 Structural Evolution of the Lailai Igneous Dikes 14 Chapter 3 Analytical Methods 23 3.1 Sampling 23 3.2 Sample Preparation 24 3.3 Whole-rock Major and Trace element Analyses 25 3.3.1 XRF analysis for the concentrations of major oxides 25 3.3.2 Q-ICP-MS analysis for the abundances of trace elements 27 3.4 Whole-rock Sr-Pb isotopic Analyses 28 Chapter 4 Results 30 4.1 Petrography 30 4.2 Whole-Rock Major and Trace Element Geochemistry 34 4.3 Sr-Pb Isotopic Compositions 53 Chapter 5 Discussion 57 5.1 Lailai lamprophyre? 57 5.2 Effects of Alteration and Crustal Contamination 65 5.2.1 Post-magmatic alteration 65 5.2.2 Distinguishing upper crustal contamination and source contamination 66 5.3 Isotopic Mixing in Lailai igneous dikes 69 5.4 Petrogenesis of the Lailai igneous dikes 75 Chapter 6 Conclusions 78 References 79

    尤芊翔 (2015)。台灣東北角海岸萊萊地區煌斑岩脈及其圍岩之構造演育探討。國立中央大學碩士論文。桃園縣。
    尤芊翔、黃文正、羅偉、王子賓、陳建志 (2016)。結合空拍及電探調查探討臺灣東北角萊萊鹼性玄武岩脈及圍岩之構造演育。經濟部中央地質調查所彙刊,29,99-126。
    何春蓀 (1975)。臺灣地質概論-臺灣地質圖說明書。經濟部中央地質調查所。
    何春蓀 (1986)。台灣地質概論-台灣地質圖說明書(第二版)。經濟部中央地質調查所。
    何恭算 (2016)。臺灣西部麓山帶晚中新世南庄與鹿谷玄武岩之定年學與地球化學研究 [Geochronology and Geochemistry of Late Miocene Nanjuang and Lugu Basalts of Western Foothills, Taiwan]。國立臺灣博物館學刊,69(2),43-74。
    李寄嵎 (1994)。澎湖地區玄武岩類與福建地區基性岩脈之定年與地球化學研究兼論中生代晚期以來中國東南地函之演化。國立臺灣大學博士論文。台北市。
    李錫堤 (1986)。大地應力分析與弧陸碰撞對於臺灣北部古應力場變遷之影響。國立臺灣大學博士論文。台北市。
    莊文星 (1992)。台灣之火山活動與火成岩。國立自然科學博物館。
    莊文星 (2013)。萊萊岩脈。科博館訊。台中市。
    陳文山 (2016)。臺灣地質概論。中華民國地質學會。
    陳正宏 (1990)。臺灣之火成岩。經濟部中央地質調查所。
    陳培源、楊昭男、王執明 (1985)。大屯山群及北部濱海地質簡介(Vol. X)。臺灣省政府教育廳。
    黃蜀圓 (2005)。台灣東北角海岸萊萊地區煌斑岩脈及其圍岩之構造地質研究。國立臺北科技大學碩士論文。台北市。
    新北市觀光旅遊網。萊萊地質區。
    顏滄波、陳培源 (1953)。五萬分之一臺灣地質圖。
    Allegre, C. J., Hamelin, B., Provost, A., & Dupre, B. (1987). Topology in isotopic multispace and origin of mantle chemical heterogeneities [Article]. Earth and Planetary Science Letters, 81(4), 319-337.
    Armienti, P., & Gasperini, D. (2007). Do We Really Need Mantle Components to Define Mantle Composition? Journal of Petrology, 48(4), 693-709.
    Barry, T. L., Saunders, A. D., Kempton, P. D., Windley, B. F., Pringle, M. S., Dorjnamjaa, D., & Saandar, S. (2003). Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44(1), 55-91.
    Buddington, A. M., Steven, C. J., Tikoff, B., & Gaschnig, R. M. (2021). Lamprophyre dikes of northern Idaho and northeastern Washington. Idaho Geological Survey.
    Bussell, M. A. (1989). A simple method for the determination of the dilation direction of intrusive sheets [Article]. Journal of Structural Geology, 11(6), 679-687.
    Chen, C.-H., Lee, C.-Y., Lin, J.-W., & Chu, M.-F. (2019). Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 190, 224-246.
    Chen, C.-H., Liu, T.-K., & Luo, H.-J. (1989). An alkali basaltic dike in Lailai, northeastern coast of Taiwan. Proceedings of the Geological Society of China, 32(4), 295-316.
    Chen, Q., Cheng, H., Liu, P. P., & Sun, M. (2024). Late Cretaceous basalts in the eastern South China Block: The result of slab tearing during retreating subduction of the Paleo-Pacific plate [Article]. Journal of Asian Earth Sciences, 261, 14, Article 105979.
    Chung, S.-L., Jahn, B.-M., Chen, S.-J., Lee, T., & Chen, C.-H. (1995). Miocene basalts in northwestern Taiwan:Evidence for EM-type mantle sources in the continental lithosphere [Article]. Geochimica et Cosmochimica Acta, 59(3), 549-555.
    Chung, S.-L., Sun, S.-S., Tu, K., Chen, C.-H., & Lee, C.-Y. (1994). Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China:Product of lithosphere-asthenosphere interaction during continental extension [Article]. Chemical Geology, 112(1-2), 1-20.
    Chung, S. L., Wang, K. L., Crawford, A. J., Kamenetsky, V. S., Chen, C. H., Lan, C. Y., & Chen, C. H. (2001). High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas [Article]. Lithos, 59(4), 153-170.
    Cooper, N. P., Scott, J. M., Brenna, M., Palmer, M. C., Roux, P. J. L., Cooper, A. F., Reid, M. R., & Stirling, C. H. (2024). Hydrous veined mantle lithosphere and implications for the source of Zealandia intraplate magmas [Article]. Lithos, 478, 15, Article 107608.
    Cousens, B. L., Allan, J. F., & Gorton, M. P. (1994). Subduction Modified Pelagic Sediments as the Enriched Component in Back-Arc Basalts from the Japan Sea - Ocean Drilling Program Site-797 and Site-794 [Article]. Contributions to Mineralogy and Petrology, 117(4), 421-434.
    Delaney, P. T., & Pollard, D. D. (1981). Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico (2330-7102).
    Delaney, P. T., Pollard, D. D., Ziony, J. I., & McKee, E. H. (1986). Field relations between dikes and joints:Emplacement processes and paleostress analysis [Article]. Journal of Geophysical Research-Solid Earth and Planets, 91(B5), 4920-4938.
    Depaolo, D. J. (1981). Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization [Article]. Earth and Planetary Science Letters, 53(2), 189-202.
    Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt, J. M., & Handler, M. R. (1997). A simple method for the precise determination of >=40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation [Article]. Chemical Geology, 134(4), 311-326.
    Elliott, T. (2003). Tracers of the slab. Geophysical Monograph-American Geophysical Union, 138, 23-46.
    Flower, M. F. J., Zhang, M., Chen, C. Y., Tu, K., & Xie, G. H. (1992). Magmatism In The South China Basin .2. Post-Spreading Quaternary Basalts From Hainan Island, South China [Article]. Chemical Geology, 97(1-2), 65-87.
    Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. J., & Schilling, J. G. (2013). The mean composition of ocean ridge basalts [Article]. Geochemistry Geophysics Geosystems, 14(3), 489-518.
    Hanan, B. B., & Graham, D. W. (1996). Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes [Article]. Science, 272(5264), 991-995.
    Hart, S. R. (1984). A large-scale isotope anomaly in the southern hemisphere mantle [Article]. Nature, 309(5971), 753-757.
    Hart, S. R., Hauri, E. H., Oschmann, L. A., & Whitehead, J. A. (1992). Mantle Plumes and Entrainment - Isotopic Evidence [Article]. Science, 256(5056), 517-520.
    Hauff, F., Hoernle, K., & Schmidt, A. (2003). Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochemistry, Geophysics, Geosystems, 4(8).
    Ho, K. S., Chen, J. C., Lo, C. H., & Zhao, H. L. (2003). 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis [Article]. Chemical Geology, 197(1-4), 287-318.
    Ho, K. S., Chen, J. C., Smith, A. D., & Juang, W. S. (2000). Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China [Article]. Chemical Geology, 167(3-4), 355-372.
    Hofmann, A. W. (1997). Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613), 219-229.
    Imaoka, T., Nakashima, K., Kamei, A., Itaya, T., Ohira, T., Nagashima, M., Kono, N., & Kiji, M. (2014). Episodic magmatism at 105 Ma in the Kinki district, SW Japan: Petrogenesis of Nb-rich lamprophyres and adakites, and geodynamic implications [Article]. Lithos, 184, 105-131.
    Irvine, T. N., & Baragar, W. R. A. (1971). A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5), 523-548.
    Ishizuka, O., Taylor, R. N., Umino, S., & Kanayama, K. (2020). Geochemical Evolution of Arc and Slab Following Subduction Initiation: a Record from the Bonin Islands, Japan [Article]. Journal of Petrology, 61(5), 20, Article egaa050.
    Jahn, B. M., Zhou, X. H., & Li, J. L. (1990). Formation And Tectonic Evolution Of Southeastern China And Taiwan - Isotopic And Geochemical Constraints [Article; Proceedings Paper]. Tectonophysics, 183(1-4), 145-160.
    Kelemen, P. B., Shimizu, N., & Dunn, T. (1993). Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle [Article]. Earth and Planetary Science Letters, 120(3-4), 111-134.
    Kelley, K. A., Plank, T., Ludden, J., & Staudigel, H. (2003). Composition of altered oceanic crust at ODP Sites 801 and 1149 [Article]. Geochemistry Geophysics Geosystems, 4, 21, Article 8910.
    Le Maitre, R. W. (1989). A classification of igneous rocks and glossary of terms. Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks.
    Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., & Bateman, P. (2005). Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press.
    Leake, B. E. (1978). Nomenclature of amphiboles [Article]. American Mineralogist, 63(11-1), 1023-1052.
    Lebas, M. J., Lemaitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A Chemical Classification of Volcanic Rocks Based on the Total Alkali- Silica Diagram. Journal of Petrology, 27(3), 745-750.
    Lebedev, S., & Nolet, G. (2003). Upper mantle beneath southeast Asia from S velocity tomography [Article]. Journal of Geophysical Research-Solid Earth, 108(B1), 26, Article 2048.
    Ma, L., Jiang, S. Y., Hou, M. L., Dai, B. Z., Jiang, Y. H., Yang, T., Zhao, K. D., Pu, W., Zhu, Z. Y., & Xu, B. (2014). Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North China Craton [Article]. Gondwana Research, 25(2), 859-872.
    McKenzie, D., & Onions, R. K. (1991). Partial Melt Distributions from Inversion of Rare Earth Element Concentrations [Review]. Journal of Petrology, 32(5), 1021-1091.
    Meschede, M. (1986). A method of discriminating between different types of midocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram [Article]. Chemical Geology, 56(3-4), 207-218.
    Mitchell, R. H. (1994). The Lamprophyre Facies [Article]. Mineralogy and Petrology, 51(2-4), 137-146.
    Münker, C., Fonseca, R. O. C., & Schulz, T. (2017). Silicate Earth's missing niobium may have been sequestered into asteroidal cores [Article]. Nature Geoscience, 10(11), 822.
    Panagos, G. S. (2008). Transocean GSF Rig 127 Drills Deepest Extended-Reach Well. T. Inc.
    Pandey, R., Rao, N. V. C., Dhote, P., Pandit, D., Choudhary, A. K., Sahoo, S., & Lehmann, B. (2018). Rift-associated ultramafic lamprophyre (damtjernite) from the middle part of the Lower Cretaceous (125 Ma) succession of Kutch, northwestern India: Tectonomagmatic implications [Article]. Geoscience Frontiers, 9(6), 1883-1902.
    Peacock, S. M., Rushmer, T., & Thompson, A. B. (1994). Partial melting of subducting oceanic crust [Article]. Earth and Planetary Science Letters, 121(1-2), 227-244.
    Peters, B. J., & Day, J. M. D. (2014). Assessment of relative Ti, Ta, and Nb (TiTAN) enrichments in ocean island basalts [Article]. Geochemistry Geophysics Geosystems, 15(11), 4424-4444.
    Pilet, S., Baker, M. B., & Stolper, E. M. (2008). Metasomatized lithosphere and the origin of alkaline lavas [Article]. Science, 320(5878), 916-919.
    Pin, C., & Gannoun, A. (2017). Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences [Article]. Analytical Chemistry, 89(4), 2411-2417.
    Plank, T., & Langmuir, C. H. (1998). The chemical composition of subducting sediment and its consequences for the crust and mantle [Article; Proceedings Paper]. Chemical Geology, 145(3-4), 325-394.
    Pollard, D. D. (1973). Derivation and evaluation of a mechanical model for sheet intrusions [Article]. Tectonophysics, 19(3), 233-269.
    Pretorius, W., Weis, D., Williams, G., Hanano, D., Kieffer, B., & Scoates, J. (2006). Complete trace elemental characterization of granitoid (USGS G-2, GSP-2) reference materials by high resolution inductively coupled plasma-mass spectrometry [Article]. Geostandards and Geoanalytical Research, 30(1), 39-54.
    Rao, N. V. C., Rao, C. V. D., & Das, S. (2012). Petrogenesis of lamprophyres from Chhota Udepur area, Narmada rift zone, and its relation to Deccan magmatism [Article]. Journal of Asian Earth Sciences, 45, 24-39.
    Rock, N. M. S. (1985). The nature and origin of lamprophyres: an overview. Journal of the Geological Society, 142(JUL), 705-705.
    Rock, N. M. S. (1991). Lamprophyres. Springer Science & Business Media.
    Rudnick, R. L., & Gao, S. (2003). Composition of the Continental Crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (1-64). Pergamon.
    Shervais, J. W. (2022). The petrogenesis of modern and ophiolitic lavas reconsidered: Ti-V and Nb-Th [Article]. Geoscience Frontiers, 13(2), 20, Article 101319.
    Soder, C. G., & Romer, R. L. (2018). Post-collisional Potassic-Ultrapotassic Magmatism of the Variscan Orogen: Implications for Mantle Metasomatism during Continental Subduction [Article]. Journal of Petrology, 59(6), 1007-1034.
    Stern, C. R., & Kilian, R. (1996). Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone [Article]. Contributions to Mineralogy and Petrology, 123(3), 263-281.
    Stoppa, F., Rukhlov, A. S., Bell, K., Schiazza, M., & Vichi, G. (2014). Lamprophyres of Italy: early Cretaceous alkaline lamprophyres of Southern Tuscany, Italy [Article]. Lithos, 188, 97-112.
    Stracke, A. (2012). Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle [Review]. Chemical Geology, 330, 274-299.
    Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo [Article]. Geochemistry Geophysics Geosystems, 6, 20, Article Q05007.
    Sun, S.-S. (1980). Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs [Article]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 297(1431), 409-445.
    Sun, S.-S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
    Sun, S. S., & Hanson, G. N. (1975). Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contributions to Mineralogy and Petrology, 52, 77-106.
    Tapponnier, P., Peltzer, G., & Armijo, R. (1986). On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113-157.
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan [Article; Proceedings Paper]. Tectonophysics, 183(1-4), 57-76.
    Thirlwall, M. F., Smith, T. E., Graham, A. M., Theodorou, N., Hollings, P., Davidson, J. P., & Arculus, R. J. (1994). High Field Strength Element Anomalies in Arc Lavas: Source or Process? [Article]. Journal of Petrology, 35(3), 819-838.
    Tsan, S.-F. (1981). Stratigraphy And Structures Of The Coastal Area From Pitou To Fulung, Northeastern Taiwan. Bulletin of the Central Geological Survey(1), 60.
    Tu, K., Flower, M. F. J., Carlson, R. W., Ming, Z., & Xie, G. H. (1991). Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): Implications for a subcontinental lithosphere Dupal source [Article]. Geology, 19(6), 567-569.
    Wang, K. L., Chung, S. L., Lo, Y. M., Lo, C. H., Yang, H. J., Shinjo, R., Lee, T. Y., Wu, J. C., & Huang, S. T. (2012). Age and geochemical characteristics of Paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin [Article]. Lithos, 155, 426-441.
    Wang, K. L., Chung, S. L., O'Reilly, S. Y., Sun, S. S., Shinjo, R., & Chen, C. H. (2004). Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region [Review]. Journal of Petrology, 45(5), 975-1011.
    Wang, K. L., Lo, Y. M., Chung, S. L., Lo, C. H., Hsu, S. K., Yang, H. J., & Shinjo, R. (2012). Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea [Article]. Terrestrial Atmospheric and Oceanic Sciences, 23(6), 657-669.
    Weaver, B. L. (1991). The origin of ocean island basalt end-member compositions:trace element and isotopic constraints [Article]. Earth and Planetary Science Letters, 104(2-4), 381-397.
    White, W., Patchett, P., & Ben, O. D. (1984). U, Th, and Pb in marine sediments, crustal recycling, and the isotopic evolution of mantle Pb. EOS, 65, 296.
    White, W. M. (1985). Sources of oceanic basalts: Radiogenic isotopic evidence [Article]. Geology, 13(2), 115-118.
    Willbold, M., & Stracke, A. (2006). Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust [Review]. Geochemistry Geophysics Geosystems, 7, 30, Article Q04004.
    Wilson, M. (1989). Igneous petrogenesis. Springer.
    Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM) [Article]. Earth and Planetary Science Letters, 231(1-2), 53-72.
    Wright, E., & White, W. M. (1987). The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes [Article]. Earth and Planetary Science Letters, 81(2-3), 151-162.
    Yen, T.-P. (1958). Cenozoic volcanic activity in Taiwan. Taiwan Min., 10, 1-39.
    Yen, T.-P. (1985). The so-called lamprophyres of Taiwan. Science Reports of the National Taiwan University ACTA Geologica Taiwanica(23), 9-18.
    Yu, X., & Liu, Z. F. (2020). Non-mantle-plume process caused the initial spreading of the South China Sea [Article]. Scientific Reports, 10(1), 10, Article 8500.
    Zhao, J. H., Hu, R. Z., Zhou, M. F., & Liu, S. (2007). Elemental and Sr-Nd-Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian province, SE China: implications for lithospheric mantle evolution [Article]. Geological Magazine, 144(6), 937-952.
    Zhou, X. M., & Li, W. X. (2000). Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas [Review]. Tectonophysics, 326(3-4), 269-287.
    Zindler, A., & Hart, S. (1986). Chemical Geodynamics [Review]. Annual Review of Earth and Planetary Sciences, 14, 493-571.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE