簡易檢索 / 詳目顯示

研究生: 林素卿
Lin, Su-Ching
論文名稱: 開發核酸穿透式運輸系統
Development of a universal DNA delivery system
指導教授: 陳宗嶽
Chen, Tzong-Yueh
楊惠郎
Yang, Huey-Lang
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 70
中文關鍵詞: 去氧核醣核酸疫苗融合蛋白人類拓樸異構酶第一型核膜運輸細胞膜質體
外文關鍵詞: cell membrane, nuclear membranes, delivery, DNA vaccine, human topoisomerase I, protein transduction domain, plasmid, fusion protein
相關次數: 點閱:103下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早在十九世紀初人們就懂得接種疫苗來預防疾病,隨著免疫學的發展而逐漸了解疫苗的作用方式,並發展出多元化的疫苗,包含死菌疫苗( inactivated vaccines )、減毒疫苗( attenuate vaccines )、次單位疫苗( subunit vaccines )、以及去氧核醣核酸疫苗( DNA vaccines )等。目前使用的疫苗種類各有其限制存在,DNA疫苗為1990年代新興的方法,DNA疫苗除了能有效的引起細胞性以及體液性的免疫反應,可以形成長時間的保護作用外,更具有其他疫苗的優點而無其缺點。然而DNA疫苗要能發揮功效必須先突破細胞膜和核膜這兩道屏障,將DNA送到細胞核內後,這段DNA才能經轉錄再經轉譯產生抗原蛋白引起免疫反應。因此發展一個無細胞種類、無DNA序列、DNA構形等限制的運送DNA系統是很重要的。
    根據前人研究,一段含高量色氨酸的胜肽( KETWWETWWTEW )(稱為protein transduction domain,PTD)具有穿越細胞膜的功能,且不需專一性受器,因此可作為攜帶DNA穿越細胞膜的工具;另一方面,人類拓樸異構酶第一型 ( human topoisomerase I,hTopo I )的氨基端能與DNA結合,其與DNA的結合無DNA序列、DNA構形等限制,並具有nuclear localization signals ( NLS )可將DNA送至細胞核內,為運送DNA的工具最好的選擇。因此我們開發一融合蛋白PTD-TOPN,其具有PTD穿越細胞膜不需專一性受器的功能,並具有hTopo I之氨基端可與DNA的結合無DNA序列、DNA構形等限制且可將DNA送至細胞核內的特點,此融合蛋白預期將可攜帶DNA疫苗,在不傷害細胞的狀況下突破細胞膜及核膜兩大屏障,將DNA送入細胞核內,並進一步表現出抗原蛋白而引起免疫反應,達到疾病防制的效果。目前研究成果發現融合蛋白PTD-TOPN的確可以將質體DNA轉染入不只一種細胞中,未來發展應用於DNA疫苗指日可待。

    The technique of delivering a foreign nucleic acid into nuclei is an essential step for research in gene therapy, DNA vaccines and genetically modified organisms. It is usually carried out through physical approaches such as electroporation and microinjection, which brings DNA through both cell and nuclear membranes. However, these physical methods usually have low efficiency and, most importantly, cause damage to the cell or nuclei that leads to undesired side effects.
    The DNA delivery method is also important in the development of DNA vaccines. A DNA vaccine was invented around 1990, which can effectively induce immune responses. However, a DNA vaccine must surmount the barriers of both cell membrane and nuclear membranes this is usually carried out through stressful means, such as a gene gun or injection.
    We set forth to develop a needle-free DNA delivery system by constructing a fusion protein ( PTD-TOPN ) which consists of a membrane penetration domain that is a tryptophan-rich peptide ( KETWWETWWTEW ), as well as a DNA binding domain that is the N-terminal 200 amino acid residues of the human topoisomerase I. Since the tryptophan-rich peptide has the ability to penetrate a membrane without requiring a specific receptor, and the N-terminal 200 amino acid residues of human topoisomerase I can bind with any DNA regardless the specific nucleotide sequence, we feel that PTD-TOPN has the potential to be a universal DNA delivery vehicle.
    We have also demonstrated its feasibility in delivering DNA into nuclei by simply mixing a plasmid that has a GFP gene with the PTD-TOPN and then to COS-7 cells. We found that the GFP gene was expressed in COS-7 cells.
    In summary, this fusion protein can be used for any DNA fragment and cells; therefore, it can be a universal method to deliver DNA.

    圖目錄 III 表目錄 V 縮寫表 VI 中文摘要 1 英文摘要 2 前言 3 材料與方法 9 結果 20 討論 27 圖表 31 參考文獻 57 附錄 64

    陳宗嶽。1990。以基因工程方法改變綠膿桿菌外毒素為具生長因子的融合毒素。國立陽明醫學院遺傳學研究所碩士論文。
    Alsner J., Svejstrup J. Q., Kjeldsen E., Sorensen B. S., and Westergaard O. (1992) Identifcation of an N-terminal domain of eukaryotic DNA topoisomerase I dispensable for catalytic activity but essential for in vivo function. J. Biol. Chem. 267, 12408–12411.
    Becker-Hapak M., McAllister S.S., and Dowdy S.F. (2001) TAT-mediated protein transduction into mammalian cells. Methods 24, 247-256.
    Baca-Estrada M. E., Foldvari M., Babiuk S. L., and Babiuk L. A. (2000) Vaccine delivery: lipid-based delivery systems. J. Biotechnol. 83, 91-104.
    Barry M. A., and Johnston S. A. (1997) Biological features of genetic immunization. Vaccine 15, 788-791.
    Birnboim H. C., and Doly J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523.
    Bharti A. K., Olson M. O., Kufe D. W., and Rubin E. H. (1996) Identifcation of a nucleolin binding site in human topoisomerase I. J. Biol. Chem. 271, 1993-1997.
    Blin N., and Stafford D. W. (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 3, 2303-2308.
    Chen T. Y., Hsu C. T., Chang K. H., Ting C. Y., Whang-Peng J., Hui C. F., and Hwang J. (2000) Development of DNA delivery system using Pseudomonas exotoxin A and a DNA binding region of human DNA topoisomerase I. Appl. Microbiol. Biotechnol. 53, 558-567.
    D’arpa P., Machlin P. S., III H. R., Rothfield N. F., Cleveland D. W., and Earnshaw W. C. (1988) cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7-kDa carboxyl-terminal fragment. Proc. Natl. Acad. Sci. USA 85, 2543-2547.
    Edwards T. K., Saleem A., Shaman J. A., Dennis T., Gerigk C., Oliveros E., Gartenberg M. R., and Rubin E. H. (2000) Role for nucleolin/Nsr1 in the cellular localization of topoisomerase I. J. Biol. Chem. 275, 36181-36188.
    Elliott G., and O’Hare P. (1997) Intercellular trafficking and protein delivery by a herpes virus structural protein. Cell 88, 223-233.
    Evelyn T. P. (1997) A historical review of fish vaccinology. Dev. Biol. Stand. 90, 3-12.
    Feltquate D. M. (1998) DNA vaccines: vector design, delivery, and antigen presentation. J. Cell. Biochem. Suppl. 30/31, 304-311.
    Ford K. G., Souberbielle B. E., Darling D., and Farzaneh F. (2001) Protein transduction: an alternative to genetic intervention? Gene Ther. 8, 1-4.
    Fawell, S., Seery J., Daikh Y., Moore C., Chen L. L., Pepinsky B., and Barsoum J. (1994) Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668.
    Falnes P. O., Wesche J., and Olsnes S. (2001) Ability of the Tat basic domain and VP22 to mediate cell binding, but not membrane translocation of the diphtheria toxin A-fragment. Biochemistry 40, 4349-4358.
    Gudding R., Lillehaug A., and Evensen O. (1999) Recent developments in fish vaccinology. Vet. Immunol. Immunopathol. 72, 203-212.
    Gorman C. M., Moffat L. F., and Howard B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044-1051.
    Heppell J., and Davis H. L. (2000) Application of DNA vaccine technology to aquaculture. Adv. Drug Deliv. Rev. 43, 29–43.
    Kanellos T., Sylvester I. D., Howard C. R., and Russell P. H. (1999) DNA is as effective as protein at inducing antibody in fish. Vaccine 17, 965-972.
    Koide Y., Nagata T., Yoshida A., and Uchijima M. (2000) DNA vaccines. Jpn. J. Pharmacol. 83, 167-174.
    Lai Z., Han I., Zirzow G., Brady R. O., and Reiser J. (2000) Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors. Proc. Natl. Acad. Sci. USA 97, 11297-11302.
    Morris M. C., Depollier J., Mery J., Heitz F., and Divita G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176.
    Montgomery D. L., Ulmer J. B., Donnelly J. J., and Liu M. A. (1997) DNA vaccines. Pharmacol. Ther. 74, 195-205.
    Mao Y., Mehl I. R., and Muller M. T. (2002) Subnuclear distribution of topoisomerase I is linked to ongoing transcription and p53 status Proc. Natl. Acad. Sci. USA 99, 1235-1240.
    Mo Y. Y., Wang C., and Beck W. T. (2000) A novel nuclear localization signal in human DNA topoisomerase I. J. Biol. Chem. 275, 41107-41113.
    Morris M. C., Vidal, P., Chaloin, L., Heitz F., and Divita G. (1997) A new peptide vector for efficient delivery of oligonucleotide into nontransformed mammalian cells. Nucleic Acids Res. 25, 2730-2736.
    Mitani K., and Caskey C. T. (1993) Delivering therapeutic genes-matching approach and application. Trends Biotechnol. 11, 162-166.
    Mitani K., and Caskey C. T. (1993) Delivering therapeutic genes - matching approach and application. Trends. Biotechnol. 11, 162-166.
    Normand N., Leeuwen H., and O’Hare P. (2001) Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery. J. Biol. Chem. 276, 15042-15050.
    Niidome T., and Huang L. (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther. 9, 16471652.
    Nagasaki T., Myohoji T., Tachibana T., Futaki S., and Tamagaki S. (2003) Can nuclear localization signals enhance nuclear localization of plasmid DNA? Bioconjugate Chem. 14, 282-286
    Oliveira S. C., Rosinha G. M., de-Brito C. F., Fonseca C. T., Afonso R. R., Costa M. C., Goes A. M., Rech E. L., and Azevedo V. (1999) Immunological properties of gene vaccines delivered by different routes. Braz. J. Med. Biol. Res. 32, 207-214.
    Phelan A., Elliott G., and O’Hare P. (1998) Intercellolar delivery of functional p53 by the herpes virus protein VP22. Nat. Biotechnol. 16, 440-443.
    Pachuk C. J., McCallus D. E., Weiner D. B., and Satishchandran C. (2000) DNA vaccines--challenges in delivery. Curr. Opin. Mol. Ther. 2, 188-198.
    Shedlock D. J., and Weiner D. B. (2000) DNA vaccination : antigen presentation and the induction of immunity. J. Leukoc. Biol. 68, 793-806.
    Schneider H., Huse K., Birkenmieier G., Otto A., and Scholz G. H. (1996) Gene transfer mediated by α2-macroglobulin. Nucleic Acids Res. 24, 3873-3874.
    Southern E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503-517.
    Schwarze S. R., Ho A., Vocero-Akbani A., and Dowdy S. F. (1999) In vivo protein transduction: delivery of a biologically active protein into mouse. Science 285, 1569-1572.
    Schwartz J. J., and Zhang S. (2000) Peptide-mediated cellular delivery. Curr. Opin. Mol. Ther. 2, 162-7.
    Scheerlinck J. Y. (2001) Genetic adjuvants for DNA vaccines. Vaccine 19, 2647–2656.
    Tang D., DeVit M., and Johnston S. A. (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 365, 152-154.
    Tuteja R. (1999) DNA vaccines: a ray of hope. Crit. Rev. Biochem. Mol. Biol. 34, 1-24.
    Vives, E., Brodin, P., and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017.
    van Drunen Littel-van den Hurk S., Gerdts V., Loehr B. I., Pontarollo R., Rankin R., Uwiera R., and Babiuk L. A. (2000) Recent advances in the use of DNA vaccines for the treatment of diseases of farmed animals. Adv. Drug. Deliv. Rev. 43, 13-28.
    Whitton J. L., Rodriguez F., Zhang J., and Hassett D. E. (1999) DNA immunization: mechanistic studies. Vaccine 17, 1612-1619.
    Wilson J. M., Grossman M., Wu C. H., Chowdhury N. R., and Wu G. Y. (1992a) Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits. J. Biol. Chem. 267, 963-967.
    Wilson J. M., Grossman M., Carbrera J., Wu C. H., and Wu G. Y. (1992b) A novel mechanism for achieving transgene persistence in vivo after gene transfer into hepatocytes. J. Biol. Chem. 267, 11483-11489.
    Zanta M. A., Belguise-Valladier P., and Behr J. P. (1999) Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96, 91-96.
    Zhu N., Liggit D., Liu Y., and Debs R. (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209-211.

    下載圖示 校內:2005-08-27公開
    校外:2005-08-27公開
    QR CODE