簡易檢索 / 詳目顯示

研究生: 鄭智鴻
Cheng, Chih-Hung
論文名稱: 量身訂做的二氧化鈦光觸媒之合成及應用
Synthesis and Application of Tailored Titania Photocatalysts
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 量身訂做金紅石銳鈦礦混合增效作用甲烯藍紫外光光催化二氧化鈦光觸媒
外文關鍵詞: methylene blue, UV-illumination, synergetic effect., rutile, anatase, Tailored titania photocatalysts, biphase titania
相關次數: 點閱:91下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用四氯化鈦(TiCl4)為前驅物,經由沈澱(precipitating)與解膠(peptizing)兩個過程製備二氧化鈦粉體。先將四氯化鈦與氫氧化鈉反應產生白色沈澱後,再加入硝酸在90℃下解膠,經過水解縮合反應,合成二氧化鈦光觸媒。藉由控制硝酸濃度可以合成各種銳鈦礦(anatase)與金紅石(rutile)比例的量身訂做二氧化鈦光觸媒。當硝酸濃度從0增加到0.5M時,二氧化鈦的結晶相態由純的銳鈦礦轉變成純的金紅石;當硝酸濃度從0.5繼續增加到4.0M時,二氧化鈦的結晶相態又由純的金紅石轉變成純的銳鈦礦。上述硝酸濃度對於二氧化鈦結晶相態轉變的雙重影響,本研究分別以pH值及硝酸根離子濃度的效應解釋之。本研究也將量身訂做的二氧化鈦光觸媒進行一系列的甲烯藍水溶液的紫外光催化反應。實驗結果顯示含82.6%銳鈦礦的混合結晶相態二氧化鈦光觸媒具有最佳的光催化轉化效率,這也證明了二氧化鈦的混合結晶相態對光催化具有混合增效作用。此外,本研究也探討以機械混合銳鈦礦與金紅石而成的混合二氧化鈦光觸媒的光催化效率,並與上述合成的相同結晶相態比例的二氧化鈦光觸媒作比較。

    In this study, titanium tetra-chloride (TiCl4) was used as precursor to prepare titanium dioxide powders by the process involves two stages: precipitating and peptizing. Firstly, white precipitates of amorphous oxide were produced from the precipitation reaction of TiOCl2 with sodium hydroxide. Then the precipitates were redispersed in aqueous solution of HNO3 at 90oC for peptizing. Tailored titania photocatalysts, which consist biphase titania with various phase compositions of anatase and rutile, can then be synthesized by controlling the concentration of HNO3. With increasing the nitric acid concentration from 0 to 0.5M, the titania crystalline changed from single phase anatase to single phase rutile. With further increasing nitric acid concentration from 0.5 to 4.0M, titania crystalline changed over from single phase rutile to single phase anatase. The reverse trend of crystalline phase formation with HNO3 concentration were explained by pH and nitric ion concentration , respectively. Furthermore, photocatalystic degradation of methylene blue by the synthesized tailored titania catalysts under UV illumination was systematically studied. A synergetic effect between the anatase and rutile particles is observed. The optimal composition of catalyst is found to be 82.6 wt% anatase. Moreover, photocatalystic performance of mechanically mixed biphase titania catalysts was also studied.

    摘要………………………………………………………………………………Ⅰ Abstract………………………………………………………………………Ⅱ 誌謝………………………………………………………………………………Ⅲ 目錄………………………………………………………………………………Ⅳ 表目錄………………………………………………………………………………Ⅶ 圖目錄………………………………………………………………………………Ⅷ 第一章 緒論………………………………………………………….. 1 1.1 前言………………………………………………………...... 1 1.2 研究動機與目的…………………………………………...... 1 第二章 文獻回顧…………………………………………………….. 3 2.1 二氧化鈦的性質與應用……………………………………... 3 2.2 二氧化鈦的製備……………………………………………... 5 2.2.1 粉體製備………………………………………………. 5 2.2.2 薄膜製備………………………………………………. 7 2.3 合成TiO2的機制………………………………….. 8 2.3.1 四氯化鈦於水溶液中的水解縮合行為………………. 8 2.3.2 水解反應……………………………............................. 8 2.3.3 縮合反應……………………………………………… 9 2.4 影響二氧化鈦晶相的因素…………………………………... 10 2.4.1 pH值與濃度對於TiO2結晶相態的影響…………… 10 2.4.2 溫度對於TiO2結晶相態的影響……………………… 14 2.4.3 硫酸離子對於TiO2結晶相態的影響………………… 16 2.5 二氧化鈦結晶相態與結晶粒子大小分析計算……………... 19 2.5.1 二氧化鈦混和結晶相態比例…………………………. 19 2.5.2 二氧化鈦結晶粒子大小………………………………. 19 2.6 二氧化鈦光催化的機制……………………………………... 20 2.7 二氧化鈦混合晶相在應用上的優點………………………... 22 第三章 實驗…………………………………………………………... 24 3.1 藥品………………………………………………………… 24 3.2 儀器設備及裝置…………………………………………… 25 3.2.1 X光繞射分析儀………………………………………. 25 3.2.2 燒結裝置:高溫爐………………………..................... 25 3.2.3 紫外光-可見光(UV-vis)光譜儀……………………... 25 3.2.4 Mili-Q超純水系統……………………………………. 26 3.2.5 掃描式電子顯微鏡……………………………………. 26 3.2.6 紫外光源………………………………………………. 27 3.3 實驗方法……………………………………………………... 28 3.3.1 TiOCl2母液的配置……………...…………………….. 28 3.3.2 母液TiOCl2的沈澱反應………………..…..…………. 29 3.3.3 鈦的氫氧化物的解膠反應……………………………. 30 3.3.4 二氧化鈦光觸媒薄膜的製備…………………………. 32 3.3.5 光催化測試……………………………………………. 33 第四章 結果與討論………………………………………………….. 34 4.1 二氧化鈦混和結晶相態比例的計算………………………... 34 4.2 二氧化鈦結晶粒子大小的計算……………………………... 34 4.3 未進行解膠的二氧化鈦……………………………………... 35 4.4 硝酸濃度對於二氧化鈦的結晶相態影響…………………... 36 4.4.1 pH值對二氧化鈦結晶相態的影響:硝酸濃度0~0.5M 40 4.4.2 [NO3-]對二氧化鈦結晶相態的影響:硝酸濃度0.5~4.0M………………………………………………. 44 4.5 二氧化鈦的回收率…….…………………………………….. 46 4.6 二氧化鈦光觸媒紫外光光催化分解甲烯藍的結果……….. 51 4.6.1 紫外光對甲烯藍水溶液的影響………………………. 51 4.6.2 甲烯藍水溶液檢量線製作……………………………. 52 4.6.3 商品P25與Alfa Aesar光催化甲烯藍比較………….. 54 4.6.4 合成的二氧化光催化甲烯藍比較……………………. 57 4.6.5 合成的二氧化鈦與商品光催化效果比較……………. 63 4.6.6 純銳鈦礦與純金紅石以機械混合後的二氧化鈦光催化效果…………………………………………………. 65 第五章 結論與建議………………………………………………….. 69 5.1 結論………………………………………………………….. 69 5.2 建議………………………………………………………….. 70 參考文獻………………………………………………………………… 71 自述……………………………………………………………………… 75 表 4-1 硝酸濃度對於450℃煅燒後的二氧化鈦銳鈦礦結晶相態比例、銳鈦礦(101)與金紅石(110)繞射主峰的半高寬及結晶粒子大小。…………………………………………… 38 表 4-2 硝酸濃度對二氧化鈦回收率的影響。…………..……… 47 表 4-3 P25與Alfa Aesar TiO2 的性質。………………………… 55 圖2-1 金紅石、銳鈦礦、板鈦礦的結晶結構圖(陳永芳, 2003)。……..…………………………………………… 3 圖2-2 構成TiO2的基本單元[TiO6]8-。…………………………. 4 圖2-3 TiO2結構單元的連接。………………………………….. 4 圖2-4 TiO2的XRD圖譜: pH(a-e) 與 [TiC14]: (f-h): (a) 8.2, (b) 7.1, (c) 3.4, (d) 1.0, (e) 0.0,(f) 0.44 mol dm-3, (g) 0.53 mol dm-3, (h) 1.40 mol dm-3 (Cheng et al.1995)。…………….. 11 圖2-5 由[TiO(OH2)5]2+與[Ti(OH)2(OH2)4]2+成核結晶生成二氧化鈦金紅石、銳鈦礦與板鈦礦可能的聚集成長機制途徑(Zheng et al., 2001)。…………………………………….. 12 圖2-6 硫酸濃度與二氧化鈦結晶相的關係(Wu et al.,2004)。… 13 圖2-7 金紅石(110)與銳鈦礦(101)繞射強度比與反應溫度的關係(Kim et al.,1999)。……………………………………… 15 圖2-8 二氧化鈦在各種鍛燒的溫度下XRD繞射圖(Kim et al.,1999)。………………………………………………… 15 圖2-9 硫酸濃度對銳鈦礦的影響(Yan et al.,2005)。…………… 16 圖2-10 硫酸根離子在反應過程可能扮演的角色(a)利用三個八面體的排列,描述金紅石還是銳鈦礦結構(b)SO42-與TiO62-產生鍵結(c)在硫酸根離子存在時兩個八面體可能提供的共邊鍵結位置(d)硫酸根離子存在而生成銳鈦礦(Yan et al.,2005)。………………………………………… 18 圖2-11 各種半導體在水溶液電解質pH=1時所測得的能隙 (Linsebigler et al., 1995)。……………………………….. 21 圖2-12 二氧化鈦受紫外光激發後,產生電子電洞的情形 (Parkin and Palgrave, 2005)……………………………… 21 圖2-13 P25在光催化時電子電洞對分離的可能機制(Sun et al.,2003)。………………………………………………… 23 圖3-1 甲烯藍的結構式………………………………………… 24 圖3-2 光催化裝置圖。………………………………………….. 27 圖3-3 光催化燈源的波長強度圖。…………………………….. 27 圖4-1 Degussa P25 的XRD圖。………………………………… 34 圖4-2 白色沈澱煅燒前後的XRD圖。 35 圖4-3 硝酸濃度對生成的二氧化鈦在煅燒前後的XRD圖譜(a)煅燒前(b)煅燒後。………………………………………… 37 圖4-4 硝酸濃度對450℃煅燒後二氧化鈦結晶相態的影響。… 39 圖4-5 高pH值時,以八面體[Ti(OH)2(OH2)4]2+合成銳鈦礦與板鈦礦的可能機制。………………………………………… 41 圖4-6 低pH值時,以八面體[TiO(OH2)5]2+形成金紅石的可能機制。………………………………………………………… 43 圖4-7 硝酸根離子對於二氧化鈦結晶相態可能的影響機制。… 45 圖4-8 硝酸濃度對合成的二氧化鈦粒子大小的影響(0.1、0.2、0.3M)。……………………………………………………… 48 圖4-8 硝酸濃度對合成的二氧化鈦粒子大小的影響(0、0.5、0.7、1.0、1.5、2.0M)。…………………………………… 49 圖4-8 硝酸濃度對合成的二氧化鈦粒子大小的影響(0.1、0.2、0.3M)。……………………………………………………… 50 圖4-9 甲烯藍5ppm在各種不同時間下紫外光照射後所測得的紫外光-可見光吸收圖譜。………………………………… 51 圖4-10 各種不同濃度甲烯藍水溶液的紫外光-可見光吸收光譜圖。………………………………………………………… 53 圖4-11 甲烯藍水溶液濃度0~10ppm的檢量線。………………… 53 圖4-12 銳鈦礦99.9% TiO2 (Alfa Aesar)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 54 圖4-13 銳鈦礦80% TiO2 (P25)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。……………………………… 54 圖4-14 Alfa Aesar與P25在不同光催化時間下甲烯藍水溶液在波長665nm的吸收與時間作圖。…………………………… 56 圖4-15 Alfa Aesar與P25在不同光催化時間下甲烯藍水溶液的轉化率。……………………………………………………… 56 圖4-16 銳鈦礦0% TiO2 (HNO3 0.5M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。……………………… 57 圖4-17 銳鈦礦48.9% TiO2 (HNO3 0.7M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 58 圖4-18 銳鈦礦76.1% TiO2 (HNO3 1.0M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 58 圖4-19 銳鈦礦82.6%% TiO2 (HNO3 1.5M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 59 圖4-20 銳鈦礦95%% TiO2 (HNO3 2.0M)在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 59 圖4-21 各種硝酸濃度下合成的二氧化鈦在不同光催化時間下甲烯藍水溶液在波長665nm的吸收與時間作圖。………… 61 圖4-22 各種硝酸濃度下合成的二氧化鈦在不同光催化時間下甲烯藍水溶液的轉化率。…………………………………… 61 圖4-23 銳鈦礦重量百分比例對甲烯藍水溶液經過兩個小時後轉化率的影響。……………………………………………… 62 圖4-24 合成的二氧化鈦相態比例與商品接近的光催化吸收度比較。………………………………………………………… 64 圖4-25 合成的二氧化鈦相態比例與商品接近的光催化轉化率比較。………………………………………………………… 64 圖4-26 商品P25、合成、混合三種不同方法獲得的二氧化鈦結晶相態銳鈦礦與金紅石82:18的XRD圖譜。………… 66 圖4-27 由混合方式獲得銳鈦礦82% TiO2在不同時間內光分解5ppm甲烯藍的紫外光可見光吸收圖譜。………………… 66 圖4-28 商品P25、合成、混合三種不同方法獲得的二氧化鈦在不同光催化時間下,甲烯藍水溶液在波長665nm的吸收與時間作圖。……………………………………………… 67 圖4-29 商品P25、合成、混合三種不同方法獲得的二氧化鈦在不同光催化時間下,甲烯藍水溶液的轉化率。………… 67 圖4-30 商品P25、合成、混合三種不同方法獲得的二氧化鈦在光催化2小時後,甲烯藍水溶液的轉化率。…………… 68

    Acosta, D. R. ; Mart´ınez, A. I. ; L´opez1, A. A. ; Maga˜na, C. R., “Titanium dioxide thin films: the effect of the preparation method in their photocatalytic properties, ” Journal of Molecular Catalysis A Chemical. 228, 183(2005).
    Arvan, B. ; Khakifirooz, A., ; Tarighat, R. ; Mohajerzadeh, S. ; Goodarzi, A. ; Soleimani, A. E. ; Arzi, E., “Atmospheric pressure chemical vapor deposition of titanium dioxide films from TiCl4, ” Materials Science and Engineering B 109, 17 (2004).
    Brinker, C.J. ; Scherer G.W., Sol-Gel Science, p21-42, Academic Press, New York, (1990).
    Cheng, H. ; Ma, J. ; Zhao, Z. ; Qi, L., “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles, “Chem. Mater. 7, 663 (1995).
    Dupont Co., http://www.titanium.dupont.com (2006).
    Fang, C. S. and Chen, Y.W., “Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution, “Materials Chemistry and Physics 78, 739 (2003).
    Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode, ”Nature 238, 37(1972).
    Gao, L. ; Li, Q. ; Song, Z. ; Wang, J., “Preparation of nano-scale titania thick film and its oxygen sensitivity, ” Sensors and Actuators B 71, 179 (2000).
    He, J.A., ; Mosurkal, R. ; Samuelson, L. A. ; Li, L. ; Kumar, J., “Dye-sensitized Solar Cell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2 Nanoparticles, “Langmuir, 19 2169 (2003).
    Hinczewski, D. ; Saygin ; Hinczewski, M. ; Tepehan, F.Z. ; Tepehan, G.G., “Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method, “Solar Energy Materials and Solar Cells 87, 181 (2005).
    Izumi, F., “The Polymorphic Crystallization of Titanium(IV) Oxide under Hydrothermal Conductions.II.The Roles of Inorganic Anions in the Nucleation of Rutile and Anatase from Acid Solution, ”Bulletin of the Chemical Society of Japan 51, 1771(1978).
    Khalil, L.B.; Mourad, W.E.; Rophael, M.W., ” Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination, ” Applied Catalysis B: Environmental 17, 267(1998).
    Kim, S.J. ; Park, S.D. ; Jeong, Y. H., “Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution ,”J. Am. Ceram. Soc., 82, 927 (1999).
    Kim, S.J. ; Park, S. D. ; Kim, K. H. ; Jeong, Y. H. Kuk, I. H., United States Patent : 6001326(1999).
    Lao, C. ; Chuai, Y. ; Su, L. ; Liu, X. ; Huang, L. ; Cheng, H. ; Zou, D., “Mix-solvent-thermal method for the synthesis of anatase nanocrystalline titaniumdioxide used in dye-sensitized solar cell , “Solar Energy Materials & Solar Cells 85, 457 (2005).
    Lee, D.S.and Liu T.K., “Preparation of TiO2 Sol Using TiCl4 as a Precursor ,” Journal of Sol-Gel Science and Technology 25, 121(2002).
    Lee, K. ; Nam, W. S. ; Han, G. Y., “Photocatalytic water-splitting in alkaline solution using redox mediator. 1:Parameter study , ” International Journal of Hydrogen Energy 29, 1343 (2004).
    Linsebigler, Amy L.; Lu, Guangquan ; Yates, John T.; Jr.,” Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results ,” Chemical Reviews 95, 735(1995).
    Nam, H. D. ; Lee, B.H. ; Kim, S.J. ; Jung, C.H. ; Lee, J.H. ; Park, S., “Preparation of Ultrafine Crystalline TiO2 Powders from Aqueous TiCl4 Solution by Precipitation, “Jpn. J. Appl. Phys. 37, 4603 (1998).
    O’Regan, B. and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, ”Nature 353, 737(1991).
    Park, H. K. ; Kim, D. K. ; Kim, C. H., “Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4, “J. Am. Ceram. Soc.80, 743. (1997).
    Park, N. G. ; van de Lagemaat, J. ; Frank, A. J., “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, ” J. Phys. Chem. B 104, 8989 (2000).
    Parkin, I. P. and Palgrave, R. G. “Self-cleaning coatings,” J. Mater. Chem., 15, 1689 (2005).
    Park, S. D. ; Cho, Y. H. ; Kim, W. W. ; Kim, S.J., “Understanding of Homogeneous Spontaneous Precipitation for Monodispersed TiO2 Ultrafine Powders with Rutile Phase around Room Temperature ,”J. Solid State Chem., 146, 230 (1999).
    Prasad, K. ; Bally,A. R. ; Schmid,P. E. ; Levy, F. ; Benoit, J. ; Barthou, C. ; Benalloul, P.,” Ce-doped TiO 2 Insulators in Thin Film Electroluminescent Devices, ” Jpn. J. Appl. Phys. 36, 5696 (1997).
    Raupp, G. B. ; Alexiadis, A. ; Hossain, Md. M. ; Changrani, R., “First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification , “Catalysis Today 69, 41(2001).
    Serpone, N. “Brief introductory remarks on heterogeous photocatalysis , ”Solar Energy Materials and Solar Cells 38, 369 (1995).
    Shimizua, K. ; Imaia, H. ; Hirashimab, H. ; Tsukumab, K.,” Low-temperature synthesis of anatase thin flms on glass and organic substrates by direct deposition from aqueous solutions, “ Thin Solid Films 351, 220 (1999).
    Sun, B. and Smirniotis, P. G., “Interaction of anatase and rutile TiO2 particles in aqueous photooxidation, ” Catalysis Today 88, 49 (2003).
    Sun, B. ; Vorontsov, A. V. ; Smirniotis, P. G.,”Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation, ” Langmuir 19, 3151(2003).
    Thevenet, F. ; Guaïtella, O. ; Herrmann, J.M. ; Rousseau, A. ; Guillard, C., “Photocatalytic degradation of acetylene over varioustitanium dioxide-based photocatalysts, ” Applied Catalysis B: Environmental 61, 58(2005).
    TOTO Co., http://www.toto.co.jp/products/hydro/genri.htm (2006).
    Wang, C.C. and Ying, J. Y.,” Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals ,” Chemistry of Materials 11, 3113 (1999).
    Wang, C. ; Deng, Z.X. and Li, Y., “The Synthesis of Nanocrystalline Anatase and Rutile Titania in Mixed Organic Media , “Inorganic Chemistry 40, 5210 (2001).
    Wu, C. ; Yue, Y. ; Deng, X. ; Hua, W. ; Gao, Z., “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations ,” Catalysis Today 93-95, 863(2004).
    Yamashita, H.; Ichihashi, Y.; Anpo, M.; Hashimoto, M.; Louis, C.; Che, M., “Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities: The Structure and Role of the Active Sites, ” J. Phys. Chem. 100, 16041(1996).
    Yang, H. G. and Zeng, H. C., “Control of Nucleation in Solution Growth of Anatase TiO2 on Glass Substrate , “J. Phys. Chem. B 107 , 12244 (2003).
    Yang, S. ; Liu, Y. ; Guo, Y. ; Zhao, J. ; Xu, H. ; Wang, Z., ” Preparation of rutile titania nanocrystals by liquid method at room temperature , ” Materials Chemistry and Physics 77, 501 (2002).
    Yang, S. and Gao, L., “Fabrication and Characterization of Nanostructurally Flowerlike Aggregates of TiO2 via a Surfactant-free Solution Route: Effect of Various Reaction Media, “Chemistry Letters 34, 1044 (2005).
    Yan, M. ; Chen, F. ; Zhang, J.; Anpo, M., “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties, ” J. Phys. Chem. B 109, 8673 (2005).
    Zhang, H. and Banfield, J.F., “Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates: Insights from TiO2, ”J. Phys. Chem. B 104, 3481 (2000).
    Zheng, Y. ; Shi, E. ; Chen, Z. ; Li, W. ; Hu, X. ,” Influence of solution concentration on the hydrothermal preparation of titania crystallites, “ J. Mater. Chem. 11, 1547 (2001).
    Zhu, Y. F. ; Zhang, L. ; Gao, C. ; Cao, L. L. ,” The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor, ” J. Mater. Sci. 35, 4049 (2000).
    王勝民, “新世代的綠色產品—光催化觸媒”, 化工資訊, 14, 35 (2000).
    陳永芳 以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦, 國立交通大學應用化學系博士論文, p3(2003).
    高濂;鄭珊;張青紅 奈米光觸媒, p41 (2004).

    下載圖示 校內:立即公開
    校外:2006-07-24公開
    QR CODE