簡易檢索 / 詳目顯示

研究生: 林家弘
Lin, Chia-Hung
論文名稱: 應用統計式句法剖析於中文轉譯台灣手語之研究
Chinese to Taiwanese Sign Language Translation Using Statistical Parsing
指導教授: 吳宗憲
Wu, Chung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 60
中文關鍵詞: 機器翻譯台灣手語
外文關鍵詞: Machine Translation, Taiwanese Sign Language
相關次數: 點閱:91下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   手語是聽語障者主要之語言溝通方式,也可以說手語是他們所使用的母語。而常人與聽語障者之間的溝通與互動,均有賴能相互瞭解、語意清晰的手語,來突破彼此間的溝通障礙。然而,現階段的機器翻譯系統,架構大多停留在文字對應之層次,另一方面,手語之對照語料較為稀少且搜集不易,造成利用機器針對台灣手語進行翻譯之成效一直不甚理想。因此,本研究之目的即針對中文轉譯台灣手語之問題,提出一套轉譯機制作為解決方案,突破溝通障礙之限制,建立起常人對聽語障者之溝通管道。

      本研究之架構,主要包含:1).中文詞庫之整合:根據不同中文詞庫之特性及所涵蓋之內容,進行詞庫合併與擴增之動作,建立一套完整之整合詞庫。2).語料之分析與相關資訊之擷取:針對手語轉譯機制所需之Context Free Grammar進行搜集之動作,同時利用EM演算法進行機率之訓練,以提供轉譯機制作翻譯機率之估算。3).中文轉手語翻譯機制之建立:以語言學之文句結構為基礎建立轉譯機制,利用樹狀結構轉換之方式,充分考量句法資訊與結構關係,並以完整之機率計算模型,涵蓋整個翻譯過程作信賴分數計算,提升翻譯架構之層次與翻譯成效。4).實驗設計與結果分析評估。

      實驗中,選取2,036句對照語句(平均句長為5.6個詞)為訓練及測試語料,依此訓練共得7,931條轉換規則(Transfer Rule)。在轉譯效能評估部份,隨機選取80%對照語句為訓練語料,其餘則為測試語料。在AER評估方面,其評估結果為0.087;另外,其Top-1之翻譯正確率為81.6%,Top-5之正確率則為91.5%;最後,選取聽語障生與手語社學生總共20名,實際針對手語翻譯系統,分三等級評量其手語翻譯結果之成效,其平均翻譯成效為81%。本研究提出一套中文轉台灣手語翻譯系統,透過相關實驗之探討結果,顯示出本研究提出之轉譯機制在翻譯成效上之改善以及翻譯層次提升之可行性。

      The hearing-impaired people generally use sign language to express their intention. However, hearing people don’t know how to use sign language and, therefore, the communication obstacle between them are formed. Presently, machine translation researches mainly focus on word-to-word translation, and some syntactic rule-based translation. On the other hand, the lack of parallel corpus of sign language limits the development of machine translation. For this reason, TSL translation system applied present machine translation technique will have no good performance. In this study, we propose a statistical approach using syntactic information for the translation from Chinese to Taiwanese Sign Language (TSL).

      More specially, we focuses on 1) establishing a integrated corpus which consist of word, part of speech, semantic role, and semantic feature by combining information of several Chinese corpora, 2) collecting the context free grammar and training its probability by EM algorithm for proposal translation mechanism, 3) proposing a Chinese to Taiwanese Sign Language translation mechanism based on sentence structure and using syntactic information by complete statistical parsing model, and 4) integrating the above approaches into a Chinese to TSL translation system.

      In order to evaluate our proposed approaches, 2,036 parallel sentences, in which the mean length of sentence is 5.6 words, were collected. Of this database, 80% was used as the training corpus and the remainder for testing, and 7,931 transfer rules were obtained. The translation performance achieved 81.6% and 91.5% accuracy for top-1 and top-5 candidates respectively, and got 0.087 Alignment Error Rate (AER). All of the above TSL translation evaluations, our proposed approach achieved higher performance than IBM Model 3. In Mean Opinion Score evaluation, the average translation performance of our proposed system also achieved 81% satisfactory degree. Consequently, our proposed system can provide a channel of communication between the deaf and the able-bodied, and applied to TSL education in future.

    中文摘要I 英文摘要Ⅱ 誌謝Ⅲ 目錄Ⅳ 表目錄Ⅵ 圖目錄Ⅶ 第一章 序 論1 1.1 研究背景與動機1 1.1.1 聽語障族群之現況分析1 1.1.2 手語教學與啟聰教育之現況探討3 1.2 文獻回顧與探討4 1.2.1 機器翻譯之歷史沿革4 1.2.2 機器翻譯之架構探討與技術比較分析5 1.2.3 聽語障溝通輔具之研發9 1.3 研究目的11 1.4 研究方法12 1.4.1 中文詞庫之整合與分析12 1.4.2 中文至手語轉譯機制之建立13 1.5 章節概要14 第二章 中文詞庫之整合與分析15 2.1 中文詞庫之整合15 2.2 中文詞庫之分析與相關資訊之擷取19 2.2.1 Context Free Grammar之搜集19 2.2.2 Probabilistic Context Free Grammar之訓練21 第三章 中文轉台灣手語翻譯機制之建立25 3.1 台灣手語轉譯問題之探討25 3.2 語言學之文句結構(Sentence Structure)概念探討26 3.3 轉譯機制之架構與機率估算模型27 3.4 中文句詞組結構剖析樹之建構機制30 3.4.1 中文句斷詞/候選詞性序列求取之處理31 3.4.2 Out of Rule之問題處理33 3.4.3 中文句詞組結構剖析樹建構模型之建立36 3.5 中文句與手語句之剖析樹結構轉換機制38 3.5.1 剖析樹結構轉換模型之建立39 3.5.2 轉換規則之搜集與機率估算41 3.6 手語句詞組結構剖析樹之驗証機制43 3.6.1 手語句詞組結構剖析樹之信賴分數估算44 第四章 實驗設計與結果分析46 4.1 系統簡介46 4.2 對照語料分析實驗47 4.3 系統相關參數設定實驗48 4.3.1 限制性詞性替代模組參數選取49 4.3.2 詞組結構剖析樹候選參數設定50 4.4 翻譯成效實驗評估51 4.4.1 AER(Alignment Error Rate)評估51 4.4.2 TOP-N轉譯結果測試53 4.4.3 MOS(Mean Opinion Score)評估54 第五章 結論與未來研究方向56 5.1 結論56 5.2 未來研究方向56 參考文獻58

    [1].Matas, J., Mathy-Laikko, P., Beukelman, D., & Legresley, K., “Identifying the non-speaking population: A demographic study,” Augmentative and Alternative Communication, Vol. 1, pp.17-31, 1985.
    [2].內政部,身心障礙人口數統計,民國92年。
    [3].陳勝良,”語言溝通障礙者數位溝通輔具系統之研發”,國立成功大學,醫學工程研究所,碩士論文,民國90年。
    [4].林寶貴,”語言障礙者就學、就業之科技支援”,台灣師範大學,特殊教育學系,民國86年。
    [5].陳素勤,”淺談台灣手語結構”,教育部特殊教育工作小組,2001年手語教學與應用研討會論文集,21,163-166,民國90年。
    [6].趙玉平,手語大師系列,現代經典出版。
    [7].Automatic Language Processing Advisory Committee (ALPAC); Language and Machines: Computers in Translation and Linguistics, 1966.
    [8].Y. Wilks. Comparisons with US/Europe. In JTEC Machine Translation Workshop, Washington, D.C., March 1991. National Science Foundation.
    [9].Bonnie J. Dorr, Pamela W. Jordan, John W. Benoit, “A Survey of Current Paradigms in Machine Translation,” 2000.
    [10].B. Vauquois. A Survey of Formal Grammars and Algorithms for Recognition and Transformation in Machine Translation. In IFIP Congress-68, pages 254-260, 1968.
    [11].James N.K.Liu and Lina Zhou,” A Hybrid Model for Chinese-English Machine Translation,” Systems, Man, and Cybernetics, IEEE Interantional Conference on , Volume: 2, 11-14 Oct 1998.
    [12].Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer, “The Mathematics of Statistical Machine Translation: Parameter Estimation,” Computational Linguistics, Vol. 19, No. 2, pp,263-311, 1993.
    [13].Franz Josef Och ,”An Efficient Method for Determining Bilingual Word Classes,” In Proc. of the Ninth Conf. of the Europ. Chapter of the Association of Computational Linguistics, Bergen, Norway, pp. 71-76, June 1999.
    [14].Christoph Tillmann and Hermann Ney, “Word Re-ordering and DP-based Search in Statistical Machine Translation,” Proceedings of COLING 2000 , The 18th International Conference on Computational Linguistics, 2000.
    [15].游大緯,”統計式機器對應與翻譯模型",國立清華大學,資訊工程研究所,碩士論文,民國91年。
    [16].O. Furuse and H. Iida, “An Example-based Method for Transfer-driven MT,” In Proc. Of TMI’92, 1992, pp. 139-148.
    [17].Dekai Wu. 1997. “Stochastic inversion transduction grammars and bilingual parsing of parallel corpora,” Computational Linguistics, 23(3).
    [18].Alshawi, S. Bangalore, and S. Douglas. 2000. “Learning dependency translation models as collections of finite state head transducers,” Computational Linguistics, 26(1).
    [19].Kenji Yamada and Kevin Knight, “A Syntax-based Statistical Translation Model,” ACL 2001: 523-530
    [20].Richard Dye, Norman Alm, John L. Arnott, Gillian Harper, “A script-based AAC system for transactional interaction,” Cambridge University Press on Natural Language Engineering, vol.4 , no. 1, pp. 57-71, 1998.
    [21].Alan Newell, Stefan Langer, Marianne Hickey, “The role of natural language processing in alternative and augmentative communication,” Cambridge University Press on Natural Language Engineering, vol.4 , no. 1, pp. 1-16, 1998.
    [22].David R. Be and Pat Mirendan: “Augmentative and Alternative Communication,” pp. 159-172, 1992. Paul H.Bookes Publishing Co.
    [23].Valli, Clayton and Lucas, Ceil, Linguistics of American Sign Language: An Introduction. Gallaudet University Press, 1995.
    [24].Wayne H. Smith, Morphological Characteristics of Verbs in Taiwan Sign Language. Ph.D. dissertion, Indiana University, 1989.
    [25].郭啟祥,”應用自然語言處理於台灣手語轉語音系統之研究”,國立成功大學,資訊工程研究所,碩士論文,民國88年。
    [26].鄭功偉,”具容錯之手語檢索機制於手語至中文翻譯之應用”,國立成功大學,資訊工程研究所,碩士論文,民國91年。
    [27].鄭智仁,”中文轉譯手語及手語影像合成之研究”,國立成功大學,資訊工程研究所,碩士論文,民國92年。
    [28].Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon, “Spoken Language Processing,”
    Prentice Hall, 2001.
    [29].Christopher D. Manning and Hinrich Schutze, “Foundations of Statistical Natural Language Processing,” The MIT Press, 1999.
    [30].趙玉平,”探索台灣手語”,教育部特殊教育工作小組,2001年手語教學與應用研討會論文集,教育部特殊教育工作小組,2004年手語暨溝通障礙研討會論文集,19,157-162,民國90年。
    [31].Victoria Fromkin, Robert Rodman, “An Introduction to Language,” Harcourt Brace College Publishers, 1998.
    [32].The Chinese Knowledge Information Processing Group, Analysis of Chinese Part of Speech. CKIP Technical Report (in Chinese), no. 93-05, Institute of Information Science, Academic Sinica, Taipei, 1993.
    [33].Och, Franz Josef and Hermann Ney, “Improved Statistical Alignment Models,” In Proceedings of the 38th Annual Meeting of the Association for Computation Linguistics, 2000.
    [34].Brown, C., “Assistive technology computers and persons with disabilities,” Communications of the ACM, vol. 5, pp. 36-46, 1992.
    [35].d’Armond L. Speers, Representation of American Sign Language for Machine Translation. Ph.D. Dissertation, Graduate School of Arts and Sciences, Georgetown University, 2001.
    [36].Lyle L. Lloyd, Donald R. Fuller, and Helen H. Arvidson, Augmentative and Alternative Communication: A Handbook of Principles and Practices. Allyn and Bacon, Inc., 1997.
    [37].H. Ney, et al., “Algorithms for statistical translation of spoken language,” IEEE Trans. on Speech and Audio Processing, Vol. 8, No. 1, pp. 24-36, 2000.
    [38].Dong ZhenDong, The HowNet web site, http://www.how-net.com/
    [39].Institute of Linguistics, National Chung Cheng University, Chiayi, Taiwan. International Symposium on Taiwan Sign Language Linguistics. [Online] Available: http://www.ccunix.ccu.edu.tw/~lngsign/tsl-links-e.htm
    [40].Ministry of Education, Division of Special Education, Changyong Cihui Shouyu Huace [Sign Album of Common Words], vol. 1. Taipei: Ministry of Education, 2000.

    下載圖示 校內:2005-07-08公開
    校外:2005-07-08公開
    QR CODE