| 研究生: |
鄢運璇 Yan, Yun-Syuan |
|---|---|
| 論文名稱: |
以礦物特徵及顯微組構研究「臺灣國道三號中寮隧道與田寮高架橋」之變形機制 Investigating the deformation mechanism of Chungliao Tunnel and Tianliao Viaduct in the National Highway No. 3 of Taiwan using the mineral and microstructural characterization |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 旗山斷層 、車瓜林斷層 、礦物特徵 、顯微組構 |
| 外文關鍵詞: | Chishan Fault, Chekualin Fault, mineral characterization, microstructure |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
旗山斷層與車瓜林斷層位在國道三號中寮隧道與田寮三號高架橋一帶,長年已經造成此工程嚴重的抬升擠壓問題,中寮隧道北端隧道口受旗山斷層影響,除了導致隧道隆起,也造成隧道淨高不足;田寮高架橋橋梁因車瓜林斷層擠壓損壞,可能會有落橋之危險,且地表變形還持續進行中,此使得長期改善工程更加艱困。本研究目的為了解當地的地質條件,利用岩石物理性質與礦物組成研究造成岩石破壞的機制,且加以探討造成斷層潛移作用加速的原因。透過野外採樣與岩礦組構分析,觀察岩體中裂縫發展趨勢與相對應力分析以了解研究區域整體變形模式。
當斷層活動時,若沒有產生應力下降的現象,而是在該特定應力下,滑動速率大致保持一定者,稱之為潛移作用,潛移作用為非震性滑動,在旗山斷層與車瓜林斷層中因潛移運動影響,岩石礦物中的變形機制主要是壓碎和摩擦滑移作用與錯動潛移作用;同時也觀察到少數黃鐵礦產生晶粒間滑移與方解石形成的機械雙晶。水(H2O)的相關結果反映:旗山斷層屬於富水環境,有益於裂縫的孕育與生長,水與裂縫兩者互為影響的物理性質加劇潛變的行為;車瓜林斷層有著升溫脫水的證據,意味著此處曾有熱液活動的事實。
另外,國道三號於旗山斷層及車瓜林斷層間路段的垂直地表位移明顯抬升,本研究認為:此局部抬升現象係屬於東南-西北向板塊擠壓所造成之結果,但周圍的應力場可能逐漸轉變中。此局部塊體岩性為古亭坑泥岩,此區含水量高且屬於不易排水的阻水層,因此在側向應力的擠壓狀況下,容易形成塑性強烈的變性體,最終造成塊體產生由下往上抬升的垂直分量。
The Chishan Fault and Chekualin Fault revealed the deformation mechanism of mineral rocks is cracking and frictional sliding as well as dislocation creep. Due to the formation of Chishan Fault’s cracks, methane gas is strongly reduced. Pyrite is formed to fill the cracks, and the auxiliary deformation mechanism is grain boundary sliding. Calcite form mechanical twining in Chekualin Fault. The H2O result indicate the Chishan Fault in the water-rich environment, which is beneficial to the formation of fractures. The physical properties caused the creep deformation behavior. The Chekualin Fault has evidence of dehydration and belongs to strongly active fault.
In addition, the vertical segment of displacement between the Chishan Fault and Chekualin Fault is obviously uplifted. In this study, it is believed that uplift of block 2 is caused by the southeast to northwest direction of plate compression. The block lithology is Gutingkeng mudstone. The experimental results show that this area has higher water content and caused water-blocking layer which is not easy to drain. Therefore, under the extrusion of lateral stress, it is easy to form a degenerative body with strong plasticity.
鳥居敬造 (1932) 台南州新化油田調查報告及地質圖。比例尺三萬分之一,台灣總督府殖產局,第609號,共29頁。
林啟文、游鎮源、洪國騰、周稟珊 (2012) 台灣南部台南—高雄泥岩區的地質構造研究。經濟部中央地質調查所彙刊,第二十五號,第143-174頁。
林啟文 (2013) 旗山。五萬分之一台灣地質圖圖幅第五十六號。經濟部中央地質調查所。
黃旭燦 (2003) 台灣中南部褶皺逆衝斷層帶地質構造特徵分析。國立中央大學地球物理研究所博士論文,130頁。
洪崇勝、陳國航、林俊宏、曾鐘億、…王錦昌 (2016) 臺灣西南外海天然氣水合物潛在賦存區沉積物之岩石磁學性質。經濟部中央地質調查所特刊,第114-115頁。
交通部高速公路局 (2018) 國道3號田寮3號高架橋及中寮隧道長期改善工程施工技術研討會論文集。交通部高速公路局,3頁。
陳文山、黃能偉、楊志成、游能悌、周飛宏、顏一勤、宋時驊、楊小青 (2005) 地震地質調查及活動斷層資料庫建置計畫:槽溝開挖與古地震研究計畫(4/5)-旗山與龍船斷層條帶地質圖說明書。經濟部中央地質調查所委託研究報告,編號94-08-2,共60頁。
陳勇昇 (2015) 藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特性。國立成功大學測量及空間資訊學系碩士論文,79頁。
施國欽 (2004) 岩石力學-大地工程學(四)。文笙書局。
顏東利、王建元、鄭富書、郭文祥 (1994) 軟弱砂岩互層岩盤之邊坡問題與穩定工法。岩盤工程研討會論文集,第399-408頁。
楊名、景國恩、楊智堯、吳宗翰、吳文隆、蕭秋安 (2018) 廣域大地變位之利用GPS監測分析與解算─以國道3號田寮3號高架橋及中寮隧道大地變位監測為例。中華技術專題報導,第119號,第122-135頁。
吳榮章、梅文威 (1985) 高雄縣旗山至鳳山地區新第三紀及第四紀地層之生物地層與古沉積環境。採樣研究彙報,第8期,第58-75頁。
Anthony, J. L., & Marone, C. (2005). Influence of particle characteristics on granular friction. Journal of Geophysical Research: Solid Earth, 110(B8).
Arora, K., Gutierrez, M., Hedayat, A., & Xia, C. (2020). Tunnels in squeezing clay-rich rocks. Underground Space.
Barla, G., Debernardi, D., & Sterpi, D. (2012). Time-dependent modeling of tunnels in squeezing conditions. International Journal of Geomechanics, 12(6), 697-710.
Bjerrum, L. (1967). Progressive failure in slopes of overconsolidated plastic clay and clay shales. Journal of Soil Mechanics & Foundations Div.
Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35(7), 863-888.
Bos, B., & Spiers, C. J. (2000). Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults. Earth and Planetary Science Letters, 184(1), 199-210.
Boullier, A. M., Yeh, E. C., Boutareaud, S., Song, S. R., & Tsai, C. H. (2009). Microscale anatomy of the 1999 Chi‐Chi earthquake fault zone. Geochemistry, Geophysics, Geosystems, 10(3).
Boyle, A. P., Prior, D. J., Banham, M. H., & Timms, N. E. (1998). Plastic deformation of metamorphic pyrite: new evidence from electron-backscatter diffraction and forescatter orientation-contrast imaging. Mineralium Deposita, 34(1), 71-81.
Bradbury, K. K., Barton, D. C., Solum, J. G., Draper, S. D., & Evans, J. P. (2007). Mineralogic and textural analyses of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial interpretations of fault zone composition and constraints on geologic models. Geosphere, 3(5), 299-318.
Burkhard, M. (1993). Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. Journal of structural geology, 15(3-5), 351-368.
Callisto, L., & Ricci, C. (2019). Interpretation and back-analysis of the damage observed in a deep tunnel after the 2016 Norcia earthquake in Italy. Tunnelling and Underground Space Technology, 89, 238-248.
Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., ... & Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214.
Cheng, Q., Zhou, D. P., & Feng, Z. J. (2009). Research on shear creep property of typical weak intercalation in redbed soft rock. Chinese Journal of Rock Mechanics and Engineering, 28(S1), 3176-3180.
Chi, W. R. (1979). A biostratigraphic study of the Late Neogene sediments in the Kaohsiung area based on calcareous nannofossils. Poceedings of the Geological Society of China, 22, 121-144.
Ching, K. E., Rau, R. J., Lee, J. C., & Hu, J. C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619.
Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251.
Chiu, J. K., Wei-Hao, T., & Liu, C. S. (2006). Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 703.
Chou, Y. M., Song, S. R., Tsao, T. M., Lin, C. S., Wang, M. K., Lee, J. J., & Chen, F. J. (2014). Identification and tectonic implications of nano-particle quartz (< 50 nm) by synchrotron X-ray diffraction in the Chelungpu fault gouge, Taiwan. Tectonophysics, 619, 36-43.
Collettini, C., Niemeijer, A., Viti, C., & Marone, C. (2009). Fault zone fabric and fault weakness. Nature, 462(7275), 907-910.
Cox, S. F., Etheridge, M. A., & Hobbs, B. E. (1981). The experimental ductile deformation of polycrystalline and single crystal pyrite. Economic Geology, 76(8), 2105-2117.
Czurda, K., Winder, C. G., & Quigley, R. M. (1973). Sedimentology, mineral facies, and petrofabric of the Meaford–Dundas Formation (Upper Ordovician) in southern Ontario. Canadian Journal of Earth Sciences, 10(12), 1790-1804.
Dauzères, A., De Windt, L., Bartier, D., Sammaljärvi, J., Barnichon, J. D., Techer, I., & Detilleux, V. (2016). Impact of a 70° C temperature on an ordinary Portland cement paste/claystone interface: An in situ experiment. Cement and Concrete Research, 83, 164-178.
Dean, K. J., Sherman, W. F., & Wilkinson, G. R. (1982). Temperature and pressure dependence of the Raman active modes of vibration of α-quartz. Spectrochimica Acta Part A: Molecular Spectroscopy, 38(10), 1105-1108.
Deffontaines, B., Liu, C. S., & Hsu, H. H. (2016). Structure and deformation of the Southern Taiwan accretionary prism: The active submarine Fangliao Fault Zone offshore west Hengchun Peninsula. Tectonophysics, 692, 227-240.
Dellisanti, F., Minguzzi, V., & Valdrè, G. (2006). Thermal and structural properties of Ca-rich montmorillonite mechanically deformed by compaction and shear. Applied Clay Science, 31(3-4), 282-289.
Dellisanti, F., Calafato, A., Pini, G. A., Moro, D., Ulian, G., & Valdrè, G. (2018). Effects of dehydration and grinding on the mechanical shear behaviour of Ca-rich montmorillonite. Applied Clay Science, 152, 239-248.
Den Brok, B., Zahid, M., & Passchier, C. (1998). Cataclastic solution creep of very soluble brittle salt as a rock analogue. Earth and Planetary Science Letters, 163(1-4), 83-95.
Dieterich, J. H., & Kilgore, B. D. (1994). Direct observation of frictional contacts: New insights for state-dependent properties. Pure and Applied Geophysics, 143(1-3), 283-302.
Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., ... & Ma, Y. F. (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 2089-2098.
Fabre, G., & Pellet, F. (2006). Creep and time-dependent damage in argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences, 43(6), 950-960.
Farmer, V. C. (2000). Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56(5), 927-930.
Findley, W. N., & Davis, F. A. (2013). Creep and relaxation of nonlinear viscoelastic materials. Courier Corporation.
Frimmel, H. E. (1991). Isotopic constraints on fluid/rock ratios in carbonate rocks: Barite-sulfide mineralization in the Schwaz Dolomite, Tyrol (Eastern Alps, Austria). Chemical Geology, 90(3-4), 195-209.
Fuh, S. C., Liu, C. S., Lundberg, N., & Reed, D. L. (1997). Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes. Tectonophysics, 274(1-3), 25-39.
Goodman, R. E. (1989). Introduction to rock mechanics (Vol. 2). New York: Wiley.
Gower, R. J., & Simpson, C. (1992). Phase boundary mobility in naturally deformed, high-grade quartzofeldspathic rocks: evidence for diffusional creep. Journal of Structural Geology, 14(3), 301-313.
Griggs, D. (1967). Hydrolytic weakening of quartz and other silicates. Geophysical Journal International, 14(1-4), 19-31.
Haines, S. H., Kaproth, B., Marone, C., Saffer, D., & Van der Pluijm, B. (2013). Shear zones in clay-rich fault gouge: A laboratory study of fabric development and evolution. Journal of Structural Geology, 51, 206-225.
Haines, S., Marone, C., & Saffer, D. (2014). Frictional properties of low-angle normal fault gouges and implications for low-angle normal fault slip. Earth and Planetary Science Letters, 408, 57-65.
He, J., Wang, S., Zhang, W., Yan, W., & Lu, Z. (2016). Characteristics of mud diapirs and mud volcanoes and their relationship to oil and gas migration and accumulation in a marginal basin of the northern South China Sea. Environmental Earth Sciences, 75(15), 1122.
Hoek, E., & Brown, E. T. (1997). Practical estimates of rock mass strength. International journal of rock mechanics and mining sciences, 34(8), 1165-1186.
Hoek, E., & Guevara, R. (2009). Overcoming squeezing in the Yacambú-Quibor tunnel, Venezuela. Rock Mechanics and Rock Engineering, 42(2), 389-418.
Hsu, Y. J., Lai, Y. R., You, R. J., Chen, H. Y., Teng, L. S., Tsai, Y. C., ... & Su, H. H. (2018). Detecting rock uplift across southern Taiwan mountain belt by integrated GPS and leveling data. Tectonophysics, 744, 275-284.
Hung, J. H., Wiltschko, D. V., Lin, H. C., Hickman, J. B., Fang, P., & Bock, Y. (1999). Structure and motion of the southwestern Taiwan fold and thrust belt. Terrestrial Atmospheric and Oceanic Sciences, 10, 543-568.
Huang, M. H., & Evans, E. L. (2019). Total variation regularization of geodetically constrained block models in southwest Taiwan. Journal of Geophysical Research: Solid Earth, 124(12), 13269-13285.
Ingrid, D. W., Chen, J. W., & Merlijn, V. S. (2001). The investigation of microsystems using Raman spectroscopy. Opt Laser Eng, 36(2), 213-23.
Janssen, C., Kanitpanyacharoen, W., Wenk, H. R., Wirth, R., Morales, L., Rybacki, E., ... & Dresen, G. (2012). Clay fabrics in SAFOD core samples. Journal of Structural Geology, 43, 118-127.
Kakali, G., Perraki, T. H., Tsivilis, S., & Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied clay science, 20(1-2), 73-80.
Knipe, R. J. (1989). Deformation mechanisms—recognition from natural tectonites. Journal of Structural Geology, 11(1-2), 127-146.
Kocks, U. F. (1976). Laws for work-hardening and low-temperature creep. 76-85.
Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., & Lee, C. T. (1999). Geometry and Quaternary kinematics of fold‐and‐thrust units of southwestern Taiwan. Tectonics, 18(6), 1198-1223.
Ladd, C. C., & Foott, R. (1974). New design procedure for stability of soft clays. Journal of Geotechnical and Geoenvironmental Engineering, 100(Proc Paper 10064).
Lajtai, E. Z. (1974). Brittle fracture in compression. International Journal of Fracture, 10(4), 525-536.
Lalla, E., Sanz-Arranz, A., Lopez-Reyes, G., Cote, K., Daly, M., Konstantinidis, M., ... & Rull-Pérez, F. (2019). A micro-Raman and X-ray study of erupted submarine pyroclasts from El Hierro (Spain) and its' astrobiological implications. Life sciences in space research, 21, 49-64.
Langdon, T. G. (1991). The physics of superplastic deformation. Materials Science and Engineering: A, 137, 1-11.
Lin, D., Yuan, R., Shang, Y., Bao, W., Wang, K., Zhang, Z., ... & He, W. (2017). Deformation and failure of a tunnel in the restraining bend of a strike–slip fault zone: an example from Hengshan Mountain, Shanxi Province, China. Bulletin of Engineering Geology and the Environment, 76(1), 263-274.
Liu, C. S., Huang, I. L., & Teng, L. S. (1997). Structural features off southwestern Taiwan. Marine Geology, 137(3-4), 305-319.
Lo, K. Y., Cooke, B. H., & Dunbar, D. D. (1987). Design of buried structures in squeezing rock in Toronto, Canada. Canadian Geotechnical Journal, 24(2), 232-241.
Madejova, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and clay minerals, 49(5), 410-432.
Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 1-10.
Mair, K., & Abe, S. (2008). 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization. Earth and Planetary Science Letters, 274(1-2), 72-81.
Marone, C., & Scholz, C. H. (1989). Particle-size distribution and microstructures within simulated fault gouge. Journal of Structural Geology, 11(7), 799-814.
McLaskey, G. C., Thomas, A. M., Glaser, S. D., & Nadeau, R. M. (2012). Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults. Nature, 491(7422), 101-104.
Meng, Q., & Wang, Z. (2019). Creep damage models and their applications for crack growth analysis in pipes: A review. Engineering Fracture Mechanics, 205, 547-576.
Meyers, M. A., & Chawla, K. K. (2008). Mechanical behavior of materials. Cambridge university press.
Mielenz, R. C., Schieltz, N. C., & King, M. E. (1953). Thermogravimetric analysis of clay and clay-like minerals. Clays and Clay Minerals, 2(1), 285-314.
Moore, C. H., & Wade, W. J. (2013). Burial Diagenetic Environment. In Developments in Sedimentology (Vol. 67, pp. 239-284). Elsevier.
Moreira, N., Miranda, T., Pinheiro, M., Fernandes, P., Dias, D., Costa, L., & Sena-Cruz, J. (2013). Back analysis of geomechanical parameters in underground works using an Evolution Strategy algorithm. Tunnelling and Underground Space Technology, 33, 143-158.
Müller, C. M., Pejcic, B., Esteban, L., Delle Piane, C., Raven, M., & Mizaikoff, B. (2014). Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems. Scientific reports, 4, 6764.
Niemeijer, A. R., & Spiers, C. J. (2007). A microphysical model for strong velocity weakening in phyllosilicate‐bearing fault gouges. Journal of Geophysical Research: Solid Earth, 112(B10).
Orellana, L. F., Scuderi, M. M., Collettini, C., & Violay, M. (2018). Do scaly clays control seismicity on faulted shale rocks?. Earth and Planetary Science Letters, 488, 59-67.
Oreste, P. (2005). Back-analysis techniques for the improvement of the understanding of rock in underground constructions. Tunnelling and Underground Space Technology, 20(1), 7-21.
Palazzin, G., Raimbourg, H., Stünitz, H., Heilbronner, R., Neufeld, K., & Précigout, J. (2018). Evolution in H2O contents during deformation of polycrystalline quartz: An experimental study. Journal of Structural Geology, 114, 95-110.
Peck, R. B. (1969). Deep excavations and tunneling in soft ground. Proc. 7th ICSMFE, 1969, 225-290.
Reinosa, J. J., Del Campo, A., & Fernández, J. F. (2015). Indirect measurement of stress distribution in quartz particles embedded in a glass matrix by using confocal Raman microscopy. Ceramics International, 41(10), 13598-13606.
Reynard, B., Caracas, R., Cardon, H., Montagnac, G., & Merkel, S. (2019). High-pressure yield strength of rocksalt structures using quartz Raman piezometry. Comptes Rendus Geoscience, 351(2-3), 71-79.
Rodríguez-Peces, M. J., Román-Herrera, J. C., Peláez, J. A., Delgado, J., Tsigé, M., Missori, C., ... & Garrido, J. (2020). Obtaining suitable logic-tree weights for probabilistic earthquake-induced landslide hazard analyses. Engineering Geology, 275, 105743.
Rutter, E. H., & Brodie, K. H. (2004). Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. Journal of Structural Geology, 26(2), 259-270.
Saffer, D. M., & Marone, C. (2003). Comparison of smectite-and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth and Planetary Science Letters, 215(1-2), 219-235.
Schleicher, A. M., Van der Pluijm, B. A., & Warr, L. N. (2010). Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California. Geology, 38(7), 667-670.
Schleicher, A. M., Van Der Pluijm, B. A., & Warr, L. N. (2012). Chlorite-smectite clay minerals and fault behavior: New evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere, 4(3), 209-220.
Schleicher, A. M., Warr, L. N., & Van Der Pluijm, B. A. (2009). On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California). Contributions to Mineralogy and Petrology, 157(2), 173.
Schmid, S. M. (1982). Microfabric studies as indicators of deformation mechanisms and flow laws operative in mountain building. a= a, 6, 4.
Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge university press.
Schuster, R., Schafler, E., Schell, N., Kunz, M., & Abart, R. (2017). Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study. Tectonophysics, 721, 448-461.
Serbena, F. C., & Zanotto, E. D. (2012). Internal residual stresses in glass-ceramics: A review. Journal of non-crystalline solids, 358(6-7), 975-984.
Sharma, S., & Judd, W. R. (1991). Underground opening damage from earthquakes. Engineering geology, 30(3-4), 263-276.
Shen, Y., Wang, Y., Yang, Y., Sun, Q., Luo, T., & Zhang, H. (2019). Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Construction and Building Materials, 213, 156-166.
Shimamoto, T., & Logan, J. M. (1981). Effects of simulated clay gouges on the sliding behavior of Tennessee sandston. Tectonophysics, 75(3-4), 243-255.
Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213.
Smith, S. A., Nielsen, S., & Di Toro, G. (2015). Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth and Planetary Science Letters, 413, 25-36.
Solum, J. G., Van Der Pluijm, B. A., Peacor, D. R., & Warr, L. N. (2003). Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. Journal of Geophysical Research: Solid Earth, 108(B5).
Stevens, R. N. (1971). Grain-boundary sliding and diffusion creep in polycrystalline solids. Philosophical Magazine, 23(182), 265-283.
Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 145(855), 362-387.
Tellam, J. H. (1995). Hydrochemistry of the saline groundwaters of the lower Mersey Basin Permo-Triassic sandstone aquifer, UK. Journal of Hydrology, 165(1-4), 45-84.
Tenthorey, E., Cox, S. F., & Todd, H. F. (2003). Evolution of strength recovery and permeability during fluid–rock reaction in experimental fault zones. Earth and Planetary Science Letters, 206(1-2), 161-172.
Trifunac, M. D., & Todorovska, M. I. (2004). 1971 San Fernando and 1994 Northridge, California, earthquakes: did the zones with severely damaged buildings reoccur?. Soil Dynamics and Earthquake Engineering, 24(3), 225-239.
Tsai, M. C., Shin, T. C., & Kuo, K. W. (2017). Pre-seismic strain anomalies and coseismic deformation of Meinong earthquake from continuous GPS. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 7.
Tsukahara, K., & Takada, Y. (2018). Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth, Planets and Space, 70(1), 1-7.
Vastava, R. B., & Langdon, T. G. (1979). An investigation of intercrystalline and interphase boundary sliding in the superplastic Pb-62% Sn eutectic. Acta metallurgica, 27(2), 251-257.
Vhareta, M., Erasmus, R. M., & Comins, J. D. (2020). Micro-Raman and X-ray diffraction stress analysis of residual stresses in fatigue loaded leached polycrystalline diamond discs. International Journal of Refractory Metals and Hard Materials, 88, 105176.
Wang, W. L., Wang, T. T., Su, J. J., Lin, C. H., Seng, C. R., & Huang, T. H. (2001). Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and underground space technology, 16(3), 133-150.
Weyl, P. K. (1959). Pressure solution and the force of crystallization: a phenomenological theory. Journal of geophysical research, 64(11), 2001-2025.
Wilson, B., Dewers, T., Reches, Z. E., & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature, 434(7034), 749-752.
Wintsch, R. P., Christoffersen, R., & Kronenberg, A. K. (1995). Fluid‐rock reaction weakening of fault zones. Journal of Geophysical Research: Solid Earth, 100(B7), 13021-13032.
Xu, D. P., Feng, X. T., & Cui, Y. J. (2013). An experimental study on the shear strength behaviour of an interlayered shear weakness zone. Bulletin of Engineering Geology and the Environment, 72(3-4), 327-338.
Yang, S. Q., Jing, H. W., & Cheng, L. (2014). Influences of pore pressure on short-term and creep mechanical behavior of red sandstone. Engineering geology, 179, 10-23.
Yang, T. F., Yeh, G. H., Fu, C. C., Wang, C. C., Lan, T. F., Lee, H. F., ... & Sung, Q. C. (2004). Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology, 46(8), 1003-1011.
Yazdani, M., Sharifzadeh, M., Kamrani, K., & Ghorbani, M. (2012). Displacement-based numerical back analysis for estimation of rock mass parameters in Siah Bisheh powerhouse cavern using continuum and discontinuum approach. Tunnelling and Underground Space Technology, 28, 41-48.
Yu, C., Tang, S., Duan, D., Zhang, Y., Liang, Z., Ma, K., & Ma, T. (2019). The effect of water on the creep behavior of red sandstone. Engineering Geology, 253, 64-74.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.