簡易檢索 / 詳目顯示

研究生: 徐榮傑
Hsu, Jung-Chieh
論文名稱: 表面張力自我組裝
Self-Assembly by Surface Tension
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 流體自我組裝表面張力疏水性接觸角
外文關鍵詞: Fluidic Self-Assembly, Surface Tension, Hydrophobic, Contact Angle
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體技術的不斷進步,與電子產品的微小化趨勢下,傳統的Pick and Place已不敷使用,為克服元件微小化所產生夾持與定位及生產成本等問題,流體自我組裝FSA (Fluidic Self-Assembly)的應用愈來愈廣泛,大多數的研究是將元件沉浸在流體中,以重力作用或流體流動,觀察元件組裝情形,鮮少有討論元件因張力作用浮於流體表面的自我組裝。本研究針對疏水性元件浮於液面上,無人工外力作用下的自我組裝現象,以3mm x 3mm x 0.8mm及2mm x 2mm x 0.8mm之矽晶片,使用OTS (octadecyltrichiorosilane)改質成疏水性表面進行實驗,探討影響矽晶片在無人工外力作用的液面上自我組裝現象的因素。結果發現,組裝元件於液面上的起始距離為20mm時,對此液體的接觸角需大於60°,才有明顯的自我組裝現象;元件的長寬比小於3:1,自我組裝現象愈明顯;元件在相同截面積且為浮體的情形下,元件愈重,自我組裝現象愈明顯。

    With the advances in semiconductor technology and the miniaturization trend of electronic products, traditional methods of Pick and Place are inadequate to overcome the production cost and clamping/positioning problems due to component miniaturization. There are more and more applications in FSA (Fluidic Self-Assembly). Most of the researches are about components immersed in fluid and use gravity or fluid flow for assembly. Few cases were studied for the behavior of SA(Self-Assembly) for components floating on the fluid surface by surface tension. In this study, the phenomena of Self-Assembly of hydrophobic components floated on fluid surface without external force were investigated. Both 3mm x 3mm x 0.8mm and 2mm x 2mm x 0.8mm silicon chips were used and treated into a hydrophobic surface by OTS (octadecyltrichiorosilane) surface modification. The results showed that obvious SA existed when the contact angle was greater than 60°. For SA, the aspect ratio of component was less than 3:1 was better. Heavy components were better for SA than lighter ones.

    摘要 .....................................................Ⅰ Abstract ................................................Ⅱ 誌謝 .................................................. III 目錄 ................................................... IV 表目錄 ................................................ VII 圖目錄 ............................................... VIII 第一章 緒論 ............................................ 1 1-1前言 ................................................. 1 1-2流體自我組裝概要 ...................................... 2 1-2-1對微小元件的影響 .................................... 3 1-2-2流體自我組裝的優點 ................................... 3 1-2-3流體自我組裝流程 ..................................... 4 1-3研究動機 .............................................. 5 第二章 文獻回顧 ........................................ 11 2-1量產實例 ............................................. 11 2-2 MEMS-IC構裝應用 ..................................... 12 2-3利用毛細力組裝元件 .................................... 13 2-4利用形狀互補組裝元件 .................................. 14 第三章 實驗設備與方法 .................................. 24 3-1實驗設備 ............................................ 24 3-1-1 SONY HDR-SR12數位攝影機 .......................... 24 3-1-2 ES-103HA精密電子式天平 ............................ 24 3-1-3 實驗液槽 ......................................... 25 3-1-4 ImageJ圖片量測軟體 ................................ 25 3-1-5 接觸角量測儀FTA125 ................................ 25 3-1-6 接觸角量測方法比較 ................................. 25 3-2實驗材料 ............................................. 26 3-2-1疏水性元件之承載液體 ................................ 26 3-2-2 矽晶圓元件製作 .................................... 26 3-2-3疏水性材料OTS(octadecyltrichiorosilane)溶液 ........ 27 3-2-4 疏水性元件製作方法 ................................. 27 3-3單晶矽晶圓之表面改質與接觸角量測 ........................ 27 3-4疏水性元件於液面時的間距對自我組裝之影響 ..................28 3-5不同液體對疏水性元件張力大小對自我組裝之影響 ......... 28 3-6不同長寬比的疏水性元件對自我組裝之影響 …................. 29 3-7疏水性元件與液面接觸面積對自我組裝之影響 ................. 30 3-8疏水性元件的重量變化對自我組裝之影響 .................... 30 3-9液面接觸面的疏水性對自我組裝之影響 ...................... 31 第四章 結果與討論 ...................................... 42 4-1單晶矽晶圓之表面改質與接觸角量測結果 .................... 42 4-2疏水性元件於液面時的間距對自我組裝之影響結果 ............. 44 4-3不同液體對疏水性元件張力大小對自我組裝之影響結果 ......... 45 4-4不同長寬比的疏水性元件對自我組裝之影響結果 .............. 46 4-5疏水性元件與液面接觸面積對自我組裝之影響結果 ............. 47 4-6疏水性元件的重量變化對自我組裝之影響結果 ................ 48 4-7液面接觸面的疏水性對自我組裝之影響結果 .................. 49 4-8表面張力對自我組裝之影響 .............................. 50 第五章 結論與未來展望 .................................. 89 5-1結論 ................................................ 89 5-2未來展望 ............................................ 90 參考文獻 ................................................ 91

    [1] D. Fittes, “Using Multicore Processors in Embedded Systems”, ESD, pp. 37-39, Oct, 2009
    [2] G.M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science, vol. 295, pp. 2418-2421, 2002
    [3] R.C. McPhredran, N.A. Nicorovici, and L.C. Botten, “Learning Optics in Nature’s School”, Aust. Opt. Soc. NEWS 15, No. 2/3, pp.7-9, 2001
    [4] H.R. Marsden and A. Kros, “Self-Assembly of Coiled Coils in Synthetic Biology: Inspiration and Progress”, Angewandte Chemie, vol. 49, pp. 2988-3005, 2010
    [5] H.O. Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias and G.M. Whitesides, “Fabrication of a Cylindrical Display by Patterned Assembly”, SCIENCE, vol. 296, pp.323-325, 2002
    [6] T.L. Breen, J. Tien, S.R.J. Oliver, T. Hadzic and G..M. Whitesides, “Design and Self-Assembly of Open, Regular, 3D Mesostructures”, SCIENCE, vol. 284, pp. 948-951, May 1999
    [7] D. Chowdhury, R. Maoz and J. Sagiv, “Wetting Driven Self-Assembly as a New Approach to Template-Guided Fabrication of Metal Nanopatterns”, NANO LETTERS, vol. 7, pp. 1770-1778, 2007
    [8] T. Kato, “Self-Assembly of Phase-Segregated Liquid Crystal Structures”, SCIENCE, vol. 295, pp. 2414-2418, Mar. 2002
    [9] J.S. Smith, “High density, Low Parasitic Direct Integration by Fluidic Self-Assembly (FSA),” Electron Devices Meeting, IEDM Technical Digest. International 10-13, pp. 201-204, Dec. 2000
    [10] A.K. Verma, M.A. Hadley, H.J. Yeh, and J.S. Smith, “Fluidic Self-Assembly of Silicon Microstructures,” IEEE, pp. 1263-1268, 1995
    [11] R.S. Fearing, “Survey of Sticking Effects for Micro Parts Handling,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pittsburg, PA, pp. 212-217, 1995
    [12] K. Han, S.H. Lee, W. Moon, J.S. Park, and C.W. Moon, “Design and Fabrication of the Micro-Gripper for Manipulating the Cell,” Integrated Ferroelectrics, vol. 89, pp. 77-86, 2007
    [13] M. Moll, K. Goldberg, M.A. Erdmann, and R. Fearing, ”Aligning Parts for Micro Assemblies,” Assembly Automation, vol. 22, pp. 46-54, 2002
    [14] U. Srinivasan, D. Liepmann, and R.T. Howe, “Microstructure to Substrate Self-Assembly Using Capillary Forces,” IEEE Journal of Microelectro Mechanical System, vol. 10, No. 1, pp. 17-24, Mar. 2001
    [15] H. Hickey, “Contact Lenses with Circuits, Lights a Possible Platform for Superhuman Vision,” University of Washington News, 17, Jan., 2008
    [16] B.A. Parviz, D. Ryan, and G.M. Whitesides, “Using Self-Assembly for the Fabrication of Nano-Scale Electronic and Photonic Devices,” IEEE Transactions on Advanced Packaging, vol. 26, No. 3, pp. 233-241, Aug. 2003
    [17] A. Avital and E. Zussman, “Fluidic Assembly of Optical Components,” IEEE Transactions on Advanced Packaging, vol. 29, No. 4, pp. 719-724, Nov. 2006
    [18] Alien Technology Corporation White Paper, http://www.alientechnology.com/, 28, Feb., 2010
    [19] E.J. Snyder, J. Chideme, and G.S.W. Craig, “Fluidic Self-Assembly of Semiconductor Devices: A Promising New Method of Mass-Producing Fleible Circuitry, ”The Japan Society of Applied Physics, vol. 41, pp. 4366-4369, 2002
    [20] Y.A. Chapuis, A. Debray, L. Jalabert, and H. Fujita, ”Alternative Approach in 3D MEMS-IC Integration Using Fluidic Self-Assembly Techniques,” Journal of Micromechanics and Microengineering, vol. 19, issue 10, Arcticle Num. 105002, pp. 1-9, Oct. 2009
    [21] U. Srinivasan, M.A. Helmbrecht, C. Rembe, R.S. Muller, and R.T. Howe,”Fluidic Self-Assembly of Micromirrors Onto Microactuators Using Capillary Forces,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, No. 1, pp. 4-11, Jan./Feb. 2002
    [22] K.L. Scott, T. Hirano, H. Yang, H. Singh, R.T. Howe, and A.M. Nikneiad, “High-Performance Inductors Using Capillary Based Fluidic Self-Assembly,” Journal of Microelectromechanical Systems, vol. 13, No. 2, pp. 300-309, Apr. 2004
    [23] N. Bowden, I.S. Choi, B.A. Grzybowski, and G.M. Whitesides,”Mesoscale Self-Assembly of Hexagonal Plates Using Lateral Capillary Forces: Synthesis Using the “Capillary Bond”,” J. Am. Chem. Soc., vol. 121, pp. 5373-5391, 1999
    [24] C. Lin, F.G. Tseng, and C.C. Chieng,”Orientation-Specific Fluidic Self-Assembly Process Based on a Capillary Effect,” Journal Micromechanics and Microengineering, vol. 19, issue 11, No. 115020, pp. 1-12, Nov. 2009
    [25] H.J. Yeh and J.S. Smith,”Fluidic Self-Assembly for The Integration of GaAs Light-Emitting Diodes on Si Substrates,” IEEE Photonics Technology Letters, vol. 6, No. 6, pp. 706-708, Jun. 1994
    [26] J.J. Talghader, J.K. Tu, and J.S. Smith,”Integration of Fluidically Self-Assembled Optoelectronic Devices Using a Silicon-Based Process,” IEEE Photonics Technology Letters, vol. 7, No. 11, pp. 1321-1323, 1995
    [27] S.A. Stauth and B.A. Parviz,”Self-Assembled Single-Crystal Silicon Circuits on Plastic,” Proceedings of The National Academy of Sciences of The United States of America, vol. 103, issue 38, pp. 13922-13927, Sep. 2006
    [28] S.A. Mirji, “Adsorption of Octadecyltrichlorosilane on Si(100)/SiO2 and SBA-15”, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 289, pp. 133-140, 2006
    [29] 陳彥辰,”相異親水性元件表面與流動影響之研究,”國立成功大學工程科學系碩士班碩士論文, 2005年7月
    [30] 李岱芬,”微小疏水性二氧化矽元件流體自我組裝之機制,”國立成功大學工程科學系碩士班碩士論文, 2005年7月
    [31] 歐旭峯,”微小元件流體自我組裝之研究,”國立成功大學工程科學系在職專班碩士論文, 2006年7月

    無法下載圖示 校內:2015-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE