簡易檢索 / 詳目顯示

研究生: 呂其洲
Lu, Chi-Chou
論文名稱: 運用CFD於牙科氣動手機之扭矩與氣動噪音的模擬與預測
Application of CFD in Dental Air-Turbine Handpieces for Torque Analysis and Aerodynamic Noise Prediction
指導教授: 李崇綱
Li, Chang-Gang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 72
中文關鍵詞: 計算流體力學扭矩牙科氣動噪音
外文關鍵詞: CFD, Torque, Dentistry, Aerodynamic noise
相關次數: 點閱:44下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是利用計算流體動力學(CFD)技術對牙科氣動手機在空轉運作時的流場進行模擬,並深入探討在不同條件下對壓力分布、扭矩特性及噪音影響的氣動聲學特性。研究首先對牙科氣動手機進行物理建模,並設定相應的模擬初始條件。而本次研究困難之處在於需要對流場進行深度分析,網格需要非常細小,以準確捕捉其內部流場的動態變化,需要極為大量的計算資源,因此通過超級電腦進行平行化運算已達成計算需求。並且通過數值模擬,本次研究分析了牙科氣動渦輪手機在高速旋轉時產生的壓力波動,並利用快速傅立葉變換(FFT)研究了壓力波動的頻率特性。此外,本研究評估了葉輪設計變化對扭矩和流場特性的影響。最終,通過比較不同葉輪設計的模擬結果,探討了形狀優化的可能性,期望在未來能透過改變葉輪形狀來降低操作噪音,提升牙科治療的舒適度與效率。研究結果不僅豐富了牙科氣動渦輪手機流場和噪音生成機制的理論,也為牙科設備設計提供了實用的參考。

    The primary objective of this study is to utilize Computational Fluid Dynamics (CFD) technology to simulate the flow field of dental air-turbine handpieces during idle operation and to investigate the aerodynamic acoustic characteristics affecting pressure distribution, torque features, and noise under various conditions. The study begins with the physical modeling of the dental air-turbine handpiece and setting the corresponding initial conditions for simulation. A challenge of this research lies in the need for an in-depth analysis of the flow field, requiring very fine meshing to accurately capture the dynamic changes within the internal flow field, thereby necessitating substantial computational resources. Therefore, parallel computations were carried out on a supercomputer to meet these computational demands. Through numerical simulation, this study analyzed the pressure fluctuations generated by the dental air-turbine handpiece during high-speed rotation and used Fast Fourier Transform (FFT) to study the frequency characteristics of these pressure fluctuations. Additionally, this research evaluated the impact of changes in impeller design on torque and flow field characteristics. Ultimately, by comparing the simulation results of different impeller designs, the potential for shape optimization was explored, with the aim of reducing operational noise and enhancing the comfort and efficiency of dental treatments in the future. The findings not only enrich the theoretical understanding of the flow field and noise generation mechanisms in dental air-turbine handpieces but also provide practical references for the design of dental equipment.

    摘要 i EXTENDED ABSTACT ii 1 INTRODUCTION iii 2 MATERIALS AND METHODS v 誌謝 vii 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 動態模擬 3 1.3.1 凍結轉子法 3 1.3.2 多重參考坐標結合沉浸邊界法 3 1.3.3 動態模擬總結 4 1.4 參考文獻資料 4 1.5 研究目的 6 1.6 本文架構 6 第二章 數值方法 8 2.1 數值計算中牙科氣動手機的物理建模 8 2.1.1 數值模擬初始條件設定 9 2.2 立方體構建法 10 2.3 強規模測試 11 2.4 統御方程式 12 2.4.1 可壓縮流的沉浸邊界法 12 2.4.2 將多重參考座標結合沉浸邊界法 15 2.4.3 時間步數模組 16 2.4.4 通過數值方法計算通量 19 第三章 結果與討論 21 3.1 葉輪設計 21 3.1.1 基礎型轉子 22 3.1.2 海鷗型轉子 23 3.1.3 附加三角槽口的海鷗型轉子 24 3.1.4 具有八顆圓形孔洞的三角槽口海鷗型轉子 25 3.1.5 具有三顆圓形孔洞的三角槽口海鷗型轉子 26 3.2 計算流場 26 3.3 壓力波動 28 3.4 流場分析 30 3.5 轉子扭矩分析 42 3.6 扭矩分析 45 3.7 轉子離10公分處的FFT以及分貝數 48 第四章 結論 53 第五章 未來展望 54 參考文獻 55

    1. Juraeva, M., et al., Designing high-speed dental air-turbine handpiece by using a computational approach. International Journal of Precision Engineering and Manufacturing, 2017. 18(10): p. 1403-1407.
    2. Masayuki TAIRA, K.W., Masao YAMAKI and Akira MATSUI, Comparison of Rotational Speeds and Torque Properties between Air-bearing and Ball-bearing Air-turbine Handpieces. Dental Materials Journal, 1989. 8(1): p. 26-34,122.
    3. Sorainen, E. and E. Rytkonen, High-frequency noise in dentistry. AIHA J (Fairfax, Va), 2002. 63(2): p. 231-3.
    4. Rytkonen, E. and E. Sorainen, Vibration of dental handpieces. AIHAJ, 2001. 62(4): p. 477-81.
    5. Müller, C.R., I. G.; Aurich, J. C., Design and numerical simulation of an air turbine for a high frequency tool spindle, in COMM, No. 30. 2014.
    6. Darvell, B.W.M., D. M., The Performance of Air-turbine Handpieces in General Dental Practice. Journal of Dentistry, 2005. 30(1): p. 16-23.
    7. Beigzadeh, B., S. Derakhshan, and D. Zia Shamami, A Numerical Study on Performance of Dental Air Turbine Handpieces. Mechanics, 2017. 23(5).
    8. Juraeva, M., D.J. Song, and D.J. Kang, Optimum Design of the Dental Air-Turbine Handpiece System Using the Design of Experiment Method. International Journal of Precision Engineering and Manufacturing, 2020. 21(2): p. 265-272.
    9. Juraeva, M.R., K. J.; Song, D. J., Optimum Design of a Saw-Tooth-Shaped Dental Air-Turbine using Design of Experiment. International Journal of Precision Engineering and Manufacturing, 2014. 15(2): p. 227-234.
    10. Li, C.-G., et al., A sharp interface immersed boundary method for thin-walled geometries in viscous compressible flows. International Journal of Mechanical Sciences, 2023. 253.
    11. Li, C.-G., M. Tsubokura, and R. Bale, Framework for simulation of natural convection in practical applications. International Communications in Heat and Mass Transfer, 2016. 75: p. 52-58.
    12. Jameson, A., Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings AIAA, 1911.
    13. Lu, H., C. Li, and M. Tsubokura, Adaptively switched time stepping scheme for direct aeroacoustic computations. AIP Advances, 2022. 12(3).
    14. Lian, C., G. Xia, and C.L. Merkle, Solution-limited time stepping to enhance reliability in CFD applications. Journal of Computational Physics, 2009. 228(13): p. 4836-4857.
    15. Rieper, F., A low-Mach number fix for Roe’s approximate Riemann solver. Journal of Computational Physics, 2011. 230(13): p. 5263-5287.
    16. Kim, K.H. and C. Kim, Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows. Journal of Computational Physics, 2005. 208(2): p. 570-615.
    17. Lee, J.-H. and K.-S. Kim, Numerical Study on the Effect of Turbine Blade Shape on Performance Characteristics of a Dental Air Turbine Handpiece. Journal of the Korean Society of Propulsion Engineers, 2009. 13.
    18. Nishi, Y., et al., Performance and Internal Flow of a Dental Air Turbine Handpiece. International Journal of Rotating Machinery, 2018. 2018: p. 1-11.
    19. Poole, M.S.T.B., An Approach for Comparative Performance Testing of Surgical Burs. Journal of Mechanics in Medicine and Biology, 2001. 1: p. 45-51.
    20. T. F. Watson, D.F., D. G. StoneT. F. Watson, D. Flanagan, D. G. Stone, High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature. British Dental Journal, 2000. 188(112): p. 680-686.
    21. J.E. Dyson, B.W.D., Torque, power and efficiency characterization of dental air turbine handpieces. Journal of Dentistry, 1999. 27: p. 573-586.
    22. Shams, P.J.B.R., Dynamic measurement of the torque-speed characteristics of dental high speed air turbine handpieces. Australian Dental Journal, 1994. 39(1): p. 33-8.
    23. Dental air turbine handpiece performance testing. Australian Dental Journal, 1995. 40(5): p. 330-338.
    24. Elias, K., A.A. Amis, and D.J. Setchell, The magnitude of cutting forces at high speed. The Journal of Prosthetic Dentistry, 2003. 89(3): p. 286-291.
    25. Darvell, J.E.D.和.B.W., The present status of dental rotary cutting performance tests. Australian Dental Journal, 1995. 40(1): p. 50-60.
    26. Yin, L., et al., Performance evaluation of a dental handpiece in simulation of clinical finishing using a novel 2DOF in vitro apparatus. Proc Inst Mech Eng H, 2006. 220(8): p. 929-38.
    27. Surakanti, J.R., et al., Dentist’s Hub Bub - A Cross-Sectional Study on Impact of Long-Term Occupational Noise Exposure on Hearing Potential among Dental Practitioners. Journal of Evolution of Medical and Dental Sciences, 2021. 10(43): p. 3676-3682.
    28. J.E. Dyson, B.W.D., Flow and free running speed characterization of dental air turbine handpieces. Journal of Dentistry, 1999. 27: p. 465–477.
    29. Lee, W. and H.B. Kwon, Vibroacoustic analysis of dental air turbine noise. BDJ Open, 2022. 8(1): p. 27.
    30. Messano, G.A. and S. Petti, General dental practitioners and hearing impairment. J Dent, 2012. 40(10): p. 821-828.
    31. Yamada, T., et al., Statistical Analysis for Subjective and Objective Evaluations of Dental Drill Sounds. PLoS One, 2016. 11(7): p. e0159926.
    32. Alrahabi, M., M.S. Zafar, and N. Ahmed, Effects of handpiece speed on the performance of undergraduate dental students in preclinical training. Journal of Taibah University Medical Sciences, 2015. 10(1): p. 50-55.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE