簡易檢索 / 詳目顯示

研究生: 盧信樺
Lu, Hsin-Hua
論文名稱: 登革病毒需葡萄糖代謝以進行複製
Dengue virus requires glucose metabolism for replication
指導教授: 賴明詔
Lai, Micheal M.C.
余佳益
Yu, Chia-Yi
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 登革病毒葡萄糖代謝
外文關鍵詞: dengue virus, glucose, metabolism
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葡萄糖對於大多數的細胞而言,都是主要、必需、且易於使用的資源;葡萄糖的代謝可以提供細胞碳源以合成相關大分子,如蛋白質、脂肪酸、核苷酸…等。登革病毒為絕對細胞內寄生的病原體,需要利用宿主提供資源去支持病毒的複製;因此,葡萄糖這個細胞中最基本的代謝資源很可能是登革病毒所利用的目標。我們的研究發現,登革病毒感染時會增加細胞使用葡萄糖時的產酸變化量,並且增加細胞對於單醣的攝取。當限制葡萄糖的供給、攝取、進入糖解作用代謝均能抑制登革病毒的感染;在我們不給予醣類或是給予單醣類似物影響葡萄糖使用時,可以觀察到登革病毒醣基蛋白prM、E、與NS1均無法被醣基化。在以糖解作用產物—丙酮酸作為碳源供給的狀況下,登革病毒蛋白醣基化似乎影響登革病毒的成熟或是釋放。此外,我們發現糖解作用的一個重要分支代謝—五碳糖磷酸路徑也是登革病毒感染所需的代謝路徑:缺乏或抑制五碳糖磷酸路徑上的相關酵素,亦可抑制登革病毒。總結而論,我們的研究初步瞭解登革病毒如何利用葡萄糖進行本身的複製,也發現了抑制葡萄糖代謝路徑具有有抑制登革病毒感染的效果,這些結果亦有助於未來登革病毒感染的治療策略開發。

    Glucose are major and essential resources for most living organisms. Glucose metabolites provide carbon sources supplying synthesis of macromolecules, such as proteins, fatty acids, and nucleotides. As an obligate intracellular pathogen, dengue virus (DENV) needs to employ host metabolic system to provide these building blocks for its replication. Therefore, DENV may utilize glucose metabolism, the simplest metabolism in host cell, for viral replication. Here we found that the extracellular acidification rate was increased in A549 cells infected with DENV and in Huh7 cells harboring DENV replicon by glucose refueling. Consistently, DENV infection increased the uptake of extracellular 2-NBDG, a green fluorescent glucose analog, indicating the glycolysis pathway is upregulated by DENV. With metabolic inhibitors, DENV titer was reduced by chemicals targeting glycolysis, pentose phosphate pathway (PPP) and aerobic respiration pathway. In the absence of glucose supplement, DENV titer was reduced in culture supernatant and the glycosylation of DENV glycoprotein was suppressed in infected cell lysates. By supplying with the glycolysis product pyruvate, we found that glycosylation may impact on the release or maturation of DENV particle. Moreover, we found that DENV RNA replication was reduced by inhibiting or silencing glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of PPP. In conclusion, our data revealed how DENV accomplishes its replication by employing host glucose metabolism for viral RNA replication and protein glycosylation.

    中文摘要 I 英文延伸摘要 II 致謝 VI 目錄 VII 圖示目錄 IX 緒論 1 一、 登革病毒簡介 1 二、 病毒的傳播與症狀 2 三、 登革病毒生活史 2 四、 登革病毒利用細胞代謝 3 五、 登革病毒與糖解作用 4 六、 糖解作用 4 七、 糖解作用與先天免疫系統關係 5 八、 先天免疫抑制登革病毒的感染 6 九、 癌細胞促進糖解作用 6 十、 研究動機與假設 7 材料與方法 8 一、 細胞株與培養方式 8 二、 病毒 9 三、 shRNA 9 四、 評估細胞糖解作用的極限運作能力 9 五、 病毒感染效價測定法 10 六、 免疫螢光染色 11 七、 細胞溶解液收集 12 八、 西方點墨法 12 九、 藥物對於細胞毒性分析 13 十、 核醣核酸萃取 14 十一、 冷光蛋白酶分析 14 十二、 即時聚合酶鏈鎖反應 15 十三、 抗體 15 十四、 數據分析 16 實驗結果 17 一、 登革病毒造成細胞中糖解作用的增加 17 二、 登革病毒使細胞對於葡萄糖攝取增加 18 三、 減少葡萄糖的供給會導致登革病毒蛋白表現量下降 18 四、 抑制葡萄糖的攝取與利用能降低登革病毒感染率與蛋白表現 19 五、 登革病毒於糖解作用後偏向需要進入有氧呼吸 19 六、 抑制五碳糖磷酸途徑可以抑制登革病毒感染 20 七、 移除葡萄糖或是單醣類似物會影響登革病毒NS蛋白分子量 21 八、 葡萄糖被利用於登革病毒醣蛋白修飾 21 九、 登革病毒無法利用醣類進行醣基化時會使複製下降 22 十、 登革病毒醣基化能力影響登革病毒感染效價 23 十一、 登革病毒的成熟或是釋放受到登革病毒醣基化蛋白影響 24 十二、 五碳糖磷酸路徑抑制劑不影響登革病毒複製子蛋白表現 24 十三、 五碳糖磷酸路徑影響登革病毒複製 25 十四、 結論 26 討論 27 參考目錄 34

    Al-alimi1, A. A. (2012). "Dengue Virus Type 2 (DENV2)-Induced Oxidative Responses in Monocytes from Glucose-6-Phosphate Dehydrogenase (G6PD)-Deficient and G6PD Normal Subjects." PLoS Negl Trop Dis 8(3): e2711.

    Allonso, D. (2015). "Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity." J. Virol 89(23): 11871-11883.

    Angela M. Green, P. (2014). "Innate immunity to dengue virus infection and subversion of antiviral responses." J Mol Biol 426(6): 1148–1160.

    Biswas, S. K. (2012). "Orchestration of Metabolism by Macrophages." Cell Metabolism 15(4): 432-437.

    Calisher, C. H. (1999). "Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera." J Gen Virol. Pt(1): 37-43.

    CDC "Dengue." https://www.cdc.gov/dengue/index.html.

    Chen, Y. (1997). "Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate." Nat Med 3(8): 866–871.

    Courageot, M.-P. (2000). "a-Glucosidase Inhibitors Reduce Dengue Virus Production by Affecting the Initial Steps of Virion Morphogenesis in the Endoplasmic Reticulum." J Virol 74(1): 564-572.

    Crabtree, H. G. (1929). " Observations on the carbohydrate metabolism of tumours." Biochem J 23(3): 536–545.

    Crabtree, M. B. (2005). "Deglycosylation of the NS1 protein of dengue 2 virus, strain 16681: Construction and characterization of mutant viruses." Archives of Virology 150(4): 771–786.

    Cummings, D. A. T. (2005). "Dynamic effects of antibody-dependent enhancement on the fitness of viruses." 102(42): 15259-15264.

    E.G.Westaway (1987). "Flavivirus Replication Strategy." Adv Virus Res. 33: 45-90.

    El-Bacha, T. (2011). "Dynamics of human hepatic cells metabolome during dengue virus infection." FASEB 25(1).

    Figueiredo, M. A. A. (2010). "Allergies and Diabetes as Risk Factors for Dengue Hemorrhagic Fever: Results of a Case Control Study." PLoS Negl Trop Dis: 4(6):e699.

    Fontaine, K. A. (2014). "Analysis of metabolic alterations in carbon utilization pathways during virus infection." University of Washington.

    Fontaine, K. A. (2015). "Dengue Virus Induces and Requires Glycolysis for Optimal Replication." Journal of Virology 89(4): 2358-2366.

    Ganapathy-Kanniappan, S. (2013). "Tumor glycolysis as a target for cancer therapy: progress and prospects." Molecular Cancer 12(152).

    Gatenby, R. A. (2007). "Glycolysis in cancer: A potential target for therapy." The International Journal of Biochemistry & Cell Biology 39(7-8): 1358-1366.

    Gray, L. R. (2013). "Regulation of pyruvate metabolism and human disease." Cell 71(14): 2577–2604.

    Heaton, N. S. (2010). "Dengue virus induced autophagy regulates lipid metabolism." Cell Host Microbe 8(5): 422–432.

    Heiden1, M. G. V. (2009). "Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation." Science 324(5930): 1029–1033.

    Hidari, K. I. P. J. (2011). "Dengue virus receptor." Trop Med Health(37–43): 39(34 Suppl).

    Htun, N. S. N. "Is Diabetes a Risk Factor for a Severe Clinical Presentation of Dengue? - Review and Metaanalysis." PLoS Negl Trop Dis 9(4).

    L.Sanchez, E. (2015). "Viral activation of cellular metabolism." Virology: 609-618.

    Liberti1, M. V. (2016). "The Warburg Effect: How Does it Benefit Cancer Cells?" Trends Biochem Sci: 41(43): 211–218.

    Maynard, N. D. (2010). "The Virus as Metabolic Engineer." Biotechnol J. 5(7): 686–694.

    Navarro-Sa´nchez, E. (2005). "Innate Immune Responses to Dengue Virus." Archives of Medical Research 36(5): 425-435.

    Ng, W. C. (2017). "The 5' and 3' Untranslated Regions of the Flaviviral Genome." viruses 9(6): 137.

    Olagnier, D. (2014). "Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells." PLoS Pathog 10(12).

    Patra, K. C. (2014). "The pentose phosphate pathway and cancer." Trends Biochem Sci 39(8): 347–354.

    Pelicano, H. (2006). "Glycolysis inhibition for anticancer treatment." Oncogene 25(34): 4633–4646.

    Perera, R. (2008). "Structural Proteomics of Dengue Virus." Curr Opin Microbiol 11(4): 369–377.

    Plaza, J. J. G. (2016). "Role of metabolism during viral infections, and crosstalk with the innate immune system." Intractable Rare Dis Res.: 5(2):90-96.

    Pokidysheva, E. (2006). "Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN." Cell: 485-493.

    Pryor, M. J. (1994). "Glycosylation Mutants of Dengue Virus NS1 Protein " J Gen Virol 75(Pt 5): 1183-1187.

    R.Cleaves, G. (1981). "Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs." Virology: 111(111):173-183.

    Rodríguez-Prados, J.-C. (2010). "Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation." J Immunol: 185(181):605-114.

    Schaar, H. M. v. d. (2008). "Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells." PLoS Pathog 4(12): e1000244.

    Somnuke, P. (2011). "N-linked glycosylation of Dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement." Virology 413(2): 253–264.

    Terman, J. R. (2013). "Post-translational Modification and Regulation of Actin." Curr Opin Cell Biol. 25(1): 30-38.

    WARBURG, O. (1925). "THE METABOLISM OF CARCINOMA CELLS." Cancer Research 9(1).

    Warburg, O. H. (1956). "On the origin of cancer cells." Science 123(3191): 309-314.

    Yap, S. S. L. (2017). "Dengue Virus Glycosylation: What Do We Know?" Front Microbiol 8(1415).

    Zybert, I. A. (2008). "Functional importance of dengue virus maturation: infectious properties of immature virions." J Gen Virol 89(Pt 12): 3047–3051.

    下載圖示 校內:2023-08-19公開
    校外:2023-08-19公開
    QR CODE