| 研究生: |
黃昱衡 Huang, Yu-Heng |
|---|---|
| 論文名稱: |
運用電氣特徵預測馬達故障之研究 A Study of Motor Fault Prediction by Electrical Characteristics |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 馬達 、故障預測 、人工智慧 、電氣分析 |
| 外文關鍵詞: | Motor, Fault prediction, Artificial Intelligence, Electrical analysis |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Adekitan, A. I., & Abdulkareem, A. (2019). The significance of the mode. of voltage imbalance on the operation and energy losses of a 3-phase induction motor. Engineering and Applied Science Research, 46(3), 200–209.
Al-Bedhany., Stanislaw, Legutko., Ali, Al-Maliki., Tahseen, A., Mankhi. (2023). A new theory of damage estimation and fatigue life prediction. doi: 10.61263/mjes.v2i2.26
Anurag, C., Mian, T., & Fatima, S. (2023). Thermography-based fault identification in induction motor across dynamic speed conditions. doi: 10.1109/iecon51785.2023.10311760
Antonino-Daviu., Israel, Zamudio-Ramírez., Roque, Alfredo, Osornio-Ríos., Larisa, Dunai. (2023). Fault diagnosis in electric motors through the analysis of currents and stray fluxes. doi: 10.1109/sielmen59038.2023.10290820
Armando, E., Boglietti, A., Carpaneto, E., Castagnini, A., & Seita, M. (2019). Thermal performances of induction motors for applications in washdown environment. IEEE Transactions on industry applications, 55, 4578–4584. https://doi.org/10.1109/TIA.2019.2917419
Borisov, K., Nielsen, M. A., Martinelli, J. A., Stauffer, B. L., Gladfelter, S. K., Todd, M. S., Jadric, I., Schreiber, J. W., & Beckley, T. (2018). A cooling system for a variable speed drive.
Bristi., Mehtar, Jahin, Tatha., Md., Firoj, Ali., Uzair, Aslam, Bhatti., Subrata, K., Sarker., Mehdi, Masud., Yazeed, Yasin, Ghadi., Abdulmohsen, Algarni., D., K., Saha. (2023). A meta-heuristic sustainable intelligent internet of things framework for bearing fault diagnosis of electric motor under variable load conditions sustainability. doi: 10.3390/su152416722
Chen, X., Fan, J., Xing, Z., & Ding, K. (2024). Research on fault diagnosis method based on the Markov transition field with enhanced properties and AM-MSCNN under different external environmental interference. Structural health monitoring-an international journal. doi: 10.1177/14759217241243353
Choi, Y., & Joe, I. (2024). Motor fault diagnosis and detection with convolutional auto encoder (CAE) based on analysis of electrical energy data electronics. doi: 10.3390/electronics13193946
Deshmukh., Anjali, R., Askhedkar. (2017). Detecting faults based on motor current signature analysis for electric motor. doi: 10.9790/9622-0707047579
Domingues, R. K., & Cordioli, J. A. (2024). Development of a methodology for diagnosing faults in bearings operating under variable operating conditions based on self-supervised learning. 16. https://doi.org/10.36001/phmconf.2024.v16i1.4183
Dutra, F. S. A., Oliveira, R. S. de, Brazil, T. M., Oliviera, J. M. L. de, & Elleres, P. A. da P. (2023). Real-time monitoring of industrial induction motors by current and vibration analysis. International Journal of Advanced Research. https://doi.org/10.21474/ijar01/17923
Elkhodragy, T., Osama, S., & El Bahy, M. (2024). Optimization of fault diagnosis of electrical motors using adaptive control based on IOT monitoring system. doi: 10.21608/fuje.2024.343804
Frederico, A., L., Souza., Helder, de, Paula., Braz, de, Jesus, Cardoso, Filho., Anderson, V., Rocha., Gideon, C., Lobato. (2013). Influence of environmental factors on the reliability of electronic components used in motor drive systems. doi: 10.1109/COBEP.2013.6785228
Freitas dos Santos, J., Dantas Lisboa, Y. M., Barbosa, E., Santos, L., Arrifano Manito, A. R., de Oliveira e Silva, M., & da Silva Fonseca, W. (2024). Motor monitoring and analysis system (SMAM) as a resource for predictive maintenance in industrial environments through digital twin and IIoT. doi: 10.5772/intechopen.1006914
Galli, F., Sircoulomb, V., Fiore, G., Hoblos, G., & Weber, P. (2023). Dynamic modelling for non-stationary bearing vibration signals. doi: 10.1109/med59994.2023.10185723
Han., Jinmei, Shi. (2023). KPCA-WPHM-SCNs-based remaining useful life prediction method for motor rolling bearings. doi: 10.1177/01423312231191569
Herzog, T., & Bartecki, K. (2024). Predictive maintenance for electrical motors: Current approach and usage of artificial intelligence algorithms. doi: 10.1109/mmar62187.2024.10680808
Hildebrandt., Mohamed, Khalil., Christoph, Bergs., Volker, Tresp., Roland, Wüchner., Kai-Uwe, Bletzinger., Michael, Heizmann. (2019). Remaining useful life estimation for unknown motors using a hybrid modeling approach. doi: 10.1109/INDIN41052.2019.8972200
Ilomuanya, C. S., Farokhi, S., & Nekahi, A. (2018). Electrical power dissipation on the surface of a ceramic insulator under pollution condition. doi: 10.1109/CEIDP.2018.8544830
Im, S. H., & Gu, B. G. (2019). Study of copper loss by inter turn short fault of interior permanent magnet synchronous motor. doi: 10.1109/ECCE.2019.8912515
Issah, H., Asante, P. K., Boateng, K. O., Afful, E., Awuah, N., & Alhassan, O. (2024). Optimizing induction motor fault detection with transfer learning: A comparative analysis of deep learning models. doi: 10.38124/ijisrt/ijisrt24nov003
Jigyasu, R., Singh, S. K., & Chikkam, S. (2023). Motor bearing fault prediction using artificial intelligence techniques. https://doi.org/10.1109/ICMOCE57812.2023.10165790
Jiang, R. (2018). An age-state-dependent degradation model prognostics and system health management conference. https://doi.org/10.1109/PHM-Chongqing.2018.00020
Kashiwase, S., & Osaki, K. (2022). Development of a model-based diagnosis technology for electric motors. https://doi.org/10.1299/jsmedmc.2022.238
Kim, Y., & Nam, K. (2017). Copper-loss-minimizing field current control scheme for wound synchronous machines. IEEE Transactions on power electronics, 32(2), 1335–1345. https://doi.org/10.1109/TPEL.2016.2547953
Lee, S. H. (2020). Platform for analyzing electric motor health and analysis method using the same.
Lin, C.-M., & Lin, S.-F. (2020). Trend analysis combined with expert system applied to real-time monitoring of motor running status and warning of abnormal status. doi.org/10.31873/IJEAS.7.05.22
Li, W., Zhang, Z., Jiang, Y., & Wang, K. (2024). Prediction and degradation analysis revolutionizing electric vehicle reducer prognostics: An advanced deep learning framework for accurate RUL prediction and degradation analysis. doi: 10.1109/iotaai62601.2024.10692468
Liu, Q., Zheng, J., Li, W., Dang, D., Yan, S., & Chen, R. (2020). Motor fault diagnosis system and method.
Liu., Xiaochuan, Duan., Shaoping, Wang., Xiaoyu, Cui., Xiao, Feng, Wu., Yu, Niu., Jing, Shi. (2023). A reliability estimation method based on signal feature extraction and artificial neural network supported Wiener process with random effects. doi: 10.1016/j.asoc.2023.110044
Liu, P.-L. (2023). Research on motor fault recognition based on multi‐sensor fusion. https://doi.org/10.1002/itl2.425
Magadán., Francisco, J., Suárez., Juan, C., Granda., Francisco, J., Dela Calle., Daniel, F., Garcia. (2023). A robust health prognostics technique for failure diagnosis and the remaining useful lifetime predictions of bearings in electric motors. doi: 10.3390/app13042220
Ma, J., Yang, Y., Wang, Q., Deng, Y., Yap, M., Chern, W. K., Oh, J. T., & Chen, Z. Y. (2023). Degradation and lifetime prediction of epoxy composite insulation materials under high relative humidity. doi: 10.3390/polym15122666
Madonna, V., Giangrande, P., Lusuardi, L., Cavallini, A., Gerada, C., & Galea, M. (2020). Thermal overload and insulation aging of short duty cycle, aerospace motors. IEEE Transactions on industrial electronics, 67(4), 2618–2629. https://doi.org/10.1109/TIE.2019.2914630
Miao, Z., Feng, W., Long, Z., Wu, G., Deng, L., Zhou, X., & Xie, L. (2024). Motor fault diagnosis using attention-based multi sensor feature fusion. doi: 10.3390/en17164053
Mosaad, M. I. (2023). DC motor control using model reference adaptive control. doi: 10.53370/001c.75401
Mukhopadhyay, S., Kar, I., & Ralte, Z. (2024). Robust fault diagnostics of industrial motors: The signal-to-image approaches for sensor data using multi-task transformers with diverse attention mechanism. 129–134. https://doi.org/10.1109/ciec59440.2024.10468531
Nguyen, H. S. H., Tran, T. H. G., Luu, M. T., & Trần, H. N. Q. (2024). Designing an artificial intelligence-based model for electric motor fault diagnosis to support maintenance decision-making. doi: 10.31130/ud-jst.2024.222
Pan, Z., Xu, Z., Chi, C., & Wang, H. (2020). Remaining useful life prediction based on a bi-directional LSTM neural network. doi: 10.1109/ICCA51439.2020.9264453
Peters, B., Mohanty, A., Fang, X., Robinson, S. K., & Gebraeel, N. (2024). Sensor-fusion based prognostics framework for complex engineering systems exhibiting multiple failure modes. https://doi.org/10.48550/arxiv.2411.12159
Selvalakshmi, B., Vijayalakshmi, P., Subha, N., & Balamani, T. (2024). Predictive maintenance in industrial systems using data mining with fuzzy logic systems. doi: 10.21917/ijsc.2024.0472
Seferi, Y., Syed, M. H., Burt, G., & Stewart, B. G. (2022). Effect of sampling rate and sensor bandwidth on measured transient signals in LV AC and DC power systems. https://doi.org/10.1109/AMPS55790.2022.9978743
Shifat, T. A., & Hur, J. W. (2020). An effective stator fault diagnosis framework of BLDC motor based on vibration and current signals. IEEE Access. doi: 10.1109/ACCESS.2020.3000856
Simões, M. G. (2023). A concise history of induction motor drives—Part 1 [History]. IEEE Electrification Magazine, 11(2), 5–11. https://doi.org/10.1109/mele.2023.3264888
Srinivasan, M., & Krishnan, A. (2012). Prediction of transformer insulation life with an effect of environmental variables. doi: 10.5120/8755-2658
Souza, F. A. L., Pereira, P., Paula, H. de, Cardoso Filho, B. de J., & Rocha, A. V. (2014). Motor drive systems reliability: Impact of the environment conditions on the electronic component failure rates. IEEE Industry Applications Society Annual Meeting, 1–8. https://doi.org/10.1109/IAS.2014.6978463
Vincent, M., Thomas, S., Suresh, S., & Prathap, B. R. (2024). Enhancing industrial equipment reliability: Advanced predictive maintenance strategies using aata analytics and machine learning. doi: 10.1109/inc460750.2024.10649212
Wang, J., Xu, L., Cai, L., Zhang, J., & Tian, J. (2022). CFD-based temperature field analysis and lifetime prediction of brushless DC motor. doi: 10.1109/ITECAsia-Pacific56316.2022.9941981
Wei, M., Yang, J., Yao, D., Wang, J., & Hu, Z. (2022). Fault diagnosis of bearings in multiple working conditions based on adaptive time-varying parameters short-time Fourier synchronous squeeze transform. Measurement Science and Technology. doi: 10.1088/1361-6501/ac8abf
Widiyanti, A. (2023). Research on life prediction method of motor. doi: 10.1007/978-981-99-0553-9_8
Yan, S., Bai, X., & Jiang, H. (2024). Research on fault prediction and diagnosis of mechanical and electrical equipment in construction machinery based on big data technology. doi: 10.54097/gnt59b95
Yang, L., Pauli, F., & Hameyer, K. (2021). Influence of thermal-mechanical stress on the insulation system of a low voltage electrical machine. Archives of Electrical Engineering. doi: 10.24425/AEE.2021.136064
Yang, M. S., & Phung, B. T. (2024). Motor winding insulation degradation under repetitive voltage pulses. IEEE Access, 12, 77658–77674. https://doi.org/10.1109/access.2024.3406490
Yuan, C., Wang, L., Sun, H., Gao, B., Wang, Y., & Cui, S. (2024). Model order reduction based DQ axis parameter extraction method for IPMSMs. doi: 10.1109/icem60801.2024.10700100
Yousuf, M., Alsuwian, T., Amin, A. A., Fareed, S., & Hamza, M. (2024). IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance. https://doi.org/10.1177/00202940241231473
Zakariya, M., & Hussain, A. (2023). IoT & ML-based parameter monitoring of 3-φ induction motors for industrial application. doi:10.1109/ICEPT58859.2023.10152450
Zhang, H., Ma, J., Chen, Y., & Li, L. (2024). Fault detection of distribution network based on electromagnetic method. doi: 10.1109/icmmt61774.2024.10672093
Zhang, S., Sun, Y., Dong, W., You, S., & Liu, Y. (2023). Diagnosis of bearing fault signals based on empirical standard autoregressive power spectrum signal decomposition method. Measurement science and technology. doi: 10.1088/1361-6501/acfcd2
Zhao, K., Cheng, L., Zhang, C., Nie, D., & Cai, W. (2017). Induction motors lifetime expectancy analysis subject to regular voltage fluctuations. IEEE Electrical power and energy conference(EPEC)https://doi.org/10.1109/EPEC.2017.8286230
校內:2030-02-08公開