簡易檢索 / 詳目顯示

研究生: 魏宏哲
Wei, Hung-Che
論文名稱: 以分子動力學分析Ni50Al50梯度奈米結構之機械性質
A Study on Mechanical Behaviors of Ni50Al50 Gradient Nanostructures by Molecular Dynamics Simulation
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 鎳鋁合金梯度結構多晶結構分子動力學金屬玻璃薄膜
外文關鍵詞: NiAl alloy, Gradient structure, polycrystalline structure, Molecular dynamics, Thin film metallic glass(TFMG)
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點在於探討鎳鋁合金梯度奈米結構在奈米尺度下的機械以及材料性質。在模擬理論方法上,使用分子動力學方法與 FinnisSinclair 勢能函數與 Voronoidiagram 作為基礎理論,使用 Atomsk[1]透過 Voronoi diagram 來建構鎳鋁多晶結構,接著使用 LAMMPS[2]來進行分子動力學模擬。首先分析鎳鋁多晶結構與鎳鋁金屬玻璃結構上的差異,再選取四塊材料接合再一起形成梯度結構,接著比較多晶結構與金屬玻璃與梯度結構三者在不同溫度、負載速率、負載方向下的機械性質、應力分佈、破壞情形。此外為了測試疲勞壽命,在結構中間挖直徑一奈米的孔洞使其產生缺陷,進而探討缺陷對機械性質的影響。拉伸與剪切試驗結果顯示,均質結構含有晶粒大小愈大其強度愈高,但其延展性也會因此而降低,金屬玻璃雖然強度最低但卻擁有最好的延展性,梯度結構則是擁有較好的強度、延展性,即使是對另一不同方向進行拉伸試驗結果也是如此,在不同溫度條件下則顯示出,溫度提高可以稍微提升延展性與抗拉強度,在不同負載速率下則顯示出,速度愈快抗拉度、延展性愈大。當材料有孔洞時,從結果可以發現孔洞在不同位置對整體結構有著非常大的影響,當在大顆粒層有孔洞時,強度及延展性僅有少許下降,而在小顆粒層或金屬玻璃層有孔洞時,則會大大的下降強度及延展性。

    This study investigated the mechanical and material properties of the Ni-Al metal gradient structure at the nanometer scale. In the simulation method, the molecular dynamics method and the Finnis-Sinclair potential energy function and the Voronoi diagram are used as the basic theory. The Atomsk[1] was used to construct a Ni-Al polycrystalline structure through a Voronoi diagram, followed by LAMMPS[2] for molecular dynamics simulation.
    Firstly, the difference between Ni-Al polycrystalline structure and Ni-Al metallic glass structure is analyzed, and then formed a gradient structure. Then compare the mechanical properties, stress distribution and damage of polycrystalline structure and metallic glass and gradient structure at different temperatures, load rates and load directions. In addition, in order to test fatigue life, a hole is dug in the middle of the structure to cause defects. The tensile and shear test results show that the higher the grain size of the homogeneous structure, the higher the strength, but the ductility is reduced. Although metallic glass has the lowest strength but has the best ductility, the gradient structure has better strength and ductility, even in the case of tensile test in another different direction. The temperature increase can improve the ductility and tensile strength. At different load rates, it shows that the faster the speed,
    the greater the tensile strength and ductility. When there is a defect in the large grain layer, the strength and ductility are only slightly decreased, and when the grain particle layer or the metallic glass layer is defective, the strength and ductility are greatly lowered.

    摘要 I Extended Abstract II 目錄 X 表目錄 XII 圖目錄 XIII 符號說明 XVII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 分子動力學之文獻回顧 3 1-2-2 梯度結構之文獻回顧 4 1-2-3 鎳鋁合金之文獻回顧 6 1-3 研究動機與目的 7 1-4 本文架構 9 第二章 分子動力學基本原理 10 2-1 分子動力學基本假設 10 2-2 分子間作用力 11 2-3 勢能函數簡介 12 2-4 無因次化 15 2-5 分子動力學求解方法 16 2-6 截斷半徑與近鄰表列法 19 2-7 週期邊界條件 22 2-8 原子級應力 25 2-9 原子級應變 26 2-10 Voronoi diagram 27 第三章 模型架構及分析方法 28 3-1 模擬模型 28 3-2 勢能函數查證 35 3-3 近鄰分析(CNA) 36 3-4 徑向分布函數(RDF) 37 3-5 模擬流程 38 第四章 結果分析與討論 41 4-1 模型結構分析 41 4-1-1 模型結晶種類與比例 41 4-1-2 模型之徑向分佈函數分析 45 4-2 拉伸機械性質探討 47 4-2-1 不同結構之影響 47 4-2-2 不同溫度之影響 52 4-2-3 不同拉伸速率之影響 59 4-2-4 不同負載方向之影響 67 4-2-5 不同孔洞位置對梯度結構之影響 70 4-3 剪切機械性質探討 87 4-3-1 不同梯度結構剪切試驗之比較 87 4-3-2 不同溫度對梯度結構剪切試驗之影響 90 第五章 結論與未來展望 93 5-1 結論 93 5-2 未來展望 95 參考文獻 96

    [1]P. Hirel, "Atomsk: A tool for manipulating and converting atomic data files," Computer Physics Communications, vol. 197, pp. 212-219, 2015.
    [2]S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995/03/01/ 1995.
    [3]H. Gleiter, N. Hansen, A. Horsewell, T. Leffers, and H. Lilholt, "Deformation of Polycrystals: Mechanisms and microstructures," in Proc. of 2nd RISO Symposium on Metallurgy and Materials Science.–Roskilde.–1981.–Р, 1981, pp. 15-21.
    [4]Y. T. Zhu and X. J. N. m. Liao, "Nanostructured metals: retaining ductility," Nature Materials, vol. 3, no. 6, p. 351, 2004.
    [5]N. Tao, M. Sui, J. Lu, and K. J. N. M. Lua, "Surface nanocrystallization of iron induced by ultrasonic shot peening," Nanostructured Materials, vol. 11, no. 4, pp. 433-440, 1999.
    [6]X. C. Liu, H. W. Zhang, and K. Lu, "Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment," Acta Materialia, vol. 96, pp. 24-36, 2015/09/01/ 2015.
    [7]J. Irving and J. G. J. T. J. o. c. p. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950.
    [8]B. J. Alder and T. E. J. T. J. o. C. P. Wainwright, "Studies in molecular dynamics. I. General method," The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
    [9]H. C. J. T. J. o. c. p. Andersen, "Molecular dynamics simulations at constant pressure and/or temperature," The Journal of Chemical Physics, vol. 72, no. 4, pp. 2384-2393, 1980.
    [10]M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, no. 12, pp. 6443-6453, 06/15/ 1984.
    [11]L. J. P. r. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical Review B, vol. 159, no. 1, p. 98, 1967.
    [12]B. Quentrec and C. J. J. o. C. P. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, no. 3, pp. 430-432, 1973.
    [13]D. Auerbach, W. Paul, A. Bakker, C. Lutz, W. Rudge, and F. F. J. J. o. P. C. Abraham, "A special purpose parallel computer for molecular dynamics: Motivation, design, implementation, and application," American Chemical Society, vol. 91, no. 19, pp. 4881-4890, 1987.
    [14]G. S. Grest, B. Dünweg, and K. J. C. P. C. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles," Computer Physics Communications, vol. 55, no. 3, pp. 269-285, 1989.
    [15]新野正之 and 平井敏雄, "傾斜機能材料―宇宙機用超耐熱材料を目指して," 日本複合材料学会誌, vol. 13, no. 6, pp. 257-264, 1987.
    [16]T. Fang, W. Li, N. Tao, and K. J. S. Lu, "Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper," Science, vol. 331, no. 6024, pp. 1587-1590, 2011.
    [17]N. J. S. M. Hansen, "Hall–Petch relation and boundary strengthening," Scripta Materialia, vol. 51, no. 8, pp. 801-806, 2004.
    [18]K. Zhou, T. Zhang, B. Liu, and Y. J. C. M. S. Yao, "Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film," Computational Materials Science, vol. 142, pp. 389-394, 2018.
    [19]D. P. Pope, "High Temperature Ordered Intermetallic Alloys," MRS Proceedings, vol. 81, p. 3, 1986, Art. no. 3.
    [20]E. Liu, J. Jia, Y. Bai, W. Wang, Y. J. M. Gao, and Design, "Study on preparation and mechanical property of nanocrystalline NiAl intermetallic," Materials & Design, vol. 53, pp. 596-601, 2014.
    [21]P.-H. Sung and T.-C. Chen, "Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics," Computational Materials Science, vol. 114, pp. 13-17, 2016.
    [22]K. J. S. Lu, "Making strong nanomaterials ductile with gradients," Computer Physics Communications, vol. 345, no. 6203, pp. 1455-1456, 2014.
    [23]X. Meng et al., "The Portevin-Le Châtelier effect of gradient nanostructured 5182 aluminum alloy by surface mechanical attrition treatment," Journal of Materials Science & Technology, vol. 34, no. 12, pp. 2307-2315, 2018.
    [24]Z. Yin et al., "Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment," Materials & Design, vol. 105, pp. 89-95, 2016.
    [25]J.-Y. Liao and A. Manthiram, "Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries," Journal of Power Sources, vol. 282, pp. 429-436, 2015.
    [26]J. Ning, B. Xu, M. Sun, C. Zhao, Y. Feng, and W. Tong, "Strain hardening and tensile behaviors of gradient structure Mg alloys with different orientation relationships," Materials Science and Engineering: A, vol. 735, pp. 275-287, 2018.
    [27]J. Ding et al., "Mechanical behavior of structurally gradient nickel alloy," Acta Materialia, vol. 149, pp. 57-67, 2018.
    [28]L. Li, Q. Fang, J. Li, and H. Wu, "Origin of strengthening-softening trade-off in gradient nanostructured body-centred cubic alloys," Journal of Alloys and Compounds, vol. 775, pp. 270-280, 2019.
    [29]Z. Yin, L. Sun, J. Yang, Y. Gong, and X. Zhu, "Mechanical behavior and deformation kinetics of gradient structured Cu-Al alloys with varying stacking fault energy," Journal of Alloys and Compounds, vol. 687, pp. 152-160, 2016.
    [30]B. Cai, X. Ma, J. Moering, H. Zhou, X. Yang, and X. Zhu, "Enhanced mechanical properties in Cu–Zn alloys with a gradient structure by surface mechanical attrition treatment at cryogenic temperature," Materials Science and Engineering: A, vol. 626, pp. 144-149, 2015.
    [31]J. E. J. P. o. t. R. S. o. L. S. A. Jones, Containing Papers of a Mathematical and P. Character, "On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature," JSTOR, vol. 106, no. 738, pp. 441-462, 1924.
    [32]J. E. J. P. o. t. R. S. o. L. S. A. Jones, Containing Papers of a Mathematical and P. Character, "On the determination of molecular fields.—II. From the equation of state of a gas," JSTOR, vol. 106, no. 738, pp. 463-477, 1924.
    [33]J. J. P. o. t. R. S. o. L. S. A. Jones, Containing Papers of a Mathematical and P. Character, "On the determination of molecular fields. III.—From crystal measurements and kinetic theory data," JSTOR, vol. 106, no. 740, pp. 709-718, 1924.
    [34]L. A. Girifalco and V. G. J. P. R. Weizer, "Application of the Morse potential function to cubic metals," Physical Review vol. 114, no. 3, p. 687, 1959.
    [35]J. J. P. R. B. Tersoff, "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems," Physical Review B, vol. 39, no. 8, p. 5566, 1989.
    [36]J. J. P. R. B. Tersoff, "New empirical approach for the structure and energy of covalent systems," Physical Review B, vol. 37, no. 12, p. 6991, 1988.
    [37]F. Cleri and V. J. P. R. B. Rosato, "Tight-binding potentials for transition metals and alloys," Physical Review B, vol. 48, no. 1, p. 22, 1993.
    [38]Y. Shao, P. Clapp, J. J. M. Rifkin, and M. T. A, "Molecular dynamics simulation of martensitic transformations in NiAI," Metallurgical and Materials Transactions A, vol. 27, no. 6, pp. 1477-1489, 1996.
    [39]Z. Chuan-Hui, H. Shuo, S. Jiang, and C. J. C. P. B. Nan-Xian, "Chen's lattice inversion embedded-atom method for Ni—Al alloy," The Chinese Physical Society, vol. 21, no. 11, p. 113401, 2012.
    [40]H. Grubmüller, H. Heller, A. Windemuth, and K. J. M. S. Schulten, "Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions," Molecular Simulation, vol. 6, no. 1-3, pp. 121-142, 1991.
    [41]W. F. Van Gunsteren and H. J. M. S. Berendsen, "A leap-frog algorithm for stochastic dynamics," Molecular Simulation vol. 1, no. 3, pp. 173-185, 1988.
    [42]D. J. T. J. o. C. P. Tsai, "The virial theorem and stress calculation in molecular dynamics," The Journal of Chemical Physics, vol. 70, no. 3, pp. 1375-1382, 1979.
    [43]F. Shimizu, S. Ogata, and J. J. M. t. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations," Materials Transactions, pp. 0710160231-0710160231, 2007.
    [44]P. J. C. P. C. Hirel, "Atomsk: A tool for manipulating and converting atomic data files," Computer Physics Communications, vol. 197, pp. 212-219, 2015.
    [45]M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, "Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys," Philosophical Magazine, vol. 89, no. 34-36, pp. 3269-3285, 2009.
    [46]G. J. Ackland, G. Tichy, V. Vitek, and M. W. Finnis, "Simple N-body potentials for the noble metals and nickel," Philosophical Magazine A, vol. 56, no. 6, pp. 735-756, 1987.
    [47]S. M. Rassoulinejad-Mousavi, Y. J. Mao, and Y. W. Zhang, "Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the elastic properties," (in English), Journal of Applied Physics, Article vol. 119, no. 24, p. 14, 2016, Art. no. 244304.
    [48]J. D. Honeycutt and H. C. Andersen, "MOLECULAR-DYNAMICS STUDY OF MELTING AND FREEZING OF SMALL LENNARD-JONES CLUSTERS," (in English), Journal of Physical Chemistry, Article vol. 91, no. 19, pp. 4950-4963, 1987.
    [49]L. L. Lee and J. M. Haile, "Group contribution methods for molecular mixtures. I. Interaction site models," Fluid Phase Equilibria, vol. 43, no. 2, pp. 231-261, 1988.
    [50]J. B. Jeon, B.-J. Lee, and Y. W. Chang, "Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron," Scripta Materialia, vol. 64, no. 6, pp. 494-497, 2011.
    [51]K. Zhou, B. Liu, Y. Yao, and K. Zhong, "Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics," Materials Science and Engineering: A, vol. 615, pp. 92-97, 2014.
    [52]T. Brink and K. Albe, "From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour," Acta Materialia, vol. 156, pp. 205-214, 2018.
    [53]N. Vo, R. Averback, P. Bellon, S. Odunuga, and A. J. P. R. B. Caro, "Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding," Physical Review B, vol. 77, no. 13, p. 134108, 2008.
    [54]E. M. Bringa, S. Traiviratana, and M. A. J. A. M. Meyers, "Void initiation in fcc metals: effect of loading orientation and nanocrystalline effects," Acta Materialia, vol. 58, no. 13, pp. 4458-4477, 2010.
    [55]G. Potirniche, M. Horstemeyer, G. Wagner, and P. J. I. J. o. P. Gullett, "A molecular dynamics study of void growth and coalescence in single crystal nickel," International Journal of Plasticity, vol. 22, no. 2, pp. 257-278, 2006.

    無法下載圖示 校內:2024-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE