簡易檢索 / 詳目顯示

研究生: 簡瑜
Chien, Yu
論文名稱: 研究造精過程中與細胞週期相關之基因
Characterization of cell-cycle related genes which may be critical for human spermatogenesis
指導教授: 郭保麟
Kuo, Pao-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 79
中文關鍵詞: 造精過程絲胺酸/酥胺酸激脢31細胞週期
外文關鍵詞: cell cycle, KARCA1, STK31, spermatogenesis
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 世界上約有百分之二至十二比例的夫妻受到生殖能力降低的影響。男性及女性因素所導致的不孕約各佔百分之五十的比例。而大部分的不孕症男性通常在造精過程中有所缺陷。許多基因牽連在哺乳類的生殖過程中,而大多數仍未被探索。為了研究男性生殖過程,我們執行 cDNA 微陣列技術分析造精缺陷患者的睪丸組織。KARCA1 是被選擇進一步研究下降調節基因的其中之一。KARCA1 是一個包含 kelch/ankyrin重覆的 cyclin A1 交互作用蛋白。藉由酵母菌三重雜交方法,KARCA1 被發現在睪丸中為一新穎 cyclinA1/CDK2 交互作用蛋白。這暗示著 KARCA1 在生殖細胞減數分裂過程中扮演著調節的角色。微陣列技術的結果與即時反轉錄多重聚合酶鏈鎖反應的結果是一致的。KARCA1 的確在造精缺陷的病人當中是有意義的下降調節。我們發現 KARCA1 基因表現在人類及老鼠各種組織當中,以及藉由反轉錄多重聚合酶鏈鎖反應分析發現 KARCA1 從老鼠出生後第一天的睪丸表現至成鼠的睪丸。另一個與男性不孕症的候選研究基因為 STK31,只表現在老鼠的精原細胞。我們假設具有嚴重造精缺陷的病人具有生殖幹細胞或精原細胞的內生性缺陷。藉由即時反轉錄多重聚合酶鏈鎖反應分析,我們發現人類 STK31 確實在不具生殖細胞的病人睪丸組織當中是有意義的下降表現。我們也發現在整各造精過程當中也可以偵測到 STK31 轉錄子的存在。我們製造了 KARCA1 與 STK31 的多源性抗體。藉由執行西方墨點分析以及免疫化學組織染色來研究 KARCA1 與 STK31 蛋白的表現情形。KARCA1 蛋白在精原細胞、精母細胞以及精細胞的細胞質被偵測到。STK31 則表現在精原細胞與精母細胞。藉由GC-1 spg 細胞的免疫螢光染色分析, STK31 與 γ-tubulin 共同表現在紡錘體/中心體。許多細胞週期調節分子被發現位於中心體上。STK31 的激酶結構域與 BubR1 有演化上的保留性。因此我們假設 STK31 為生殖細胞專有的細胞週期檢查點的蛋白。

    Between 2% and 12% of couples worldwide are affected by reduced fertility. Male factors and female factors accounts for approximately 50% of causes in infertile couples, respectively. In men, a large proportion of infertile men have defects in the process of spermatogenesis. Numerous genes are implicated in mammalian fertility pathways, the majority of which have not been explored. To study the male fertility pathways, we performed the cDNA microarray analysis of testicular tissues from patients with spermatogenic defect. KARCA1 was one of down-regulated genes chosen for further study. KARCA1 is a kelch/ankyrin repeat-containing cyclin A1-interacting protein. By the yeast triple-hybrid approach, KARCA1 was found to be a novel cyclinA1/CDK2 interaction partners in the testis. This suggests the regulatory role of KARCA1 during the meiotic division of germ cells. The result of microarray analysis was consistent with the real time RT-PCR. KARCA1 was significantly down-regulated in patients with spermatogenic defects. We found KARCA1 gene was expressed in various human and mouse tissues and its transcript was detectable from the testes of postnatal day1 to the adult mouse by RT-PCR analysis. The other candidate gene of male sterility was STK31, a gene expressed exclusively in the spermatogonia of mouse. We hypothesize that some cases with severe spermatogenic defect have intrinsic defect in germ-line stem cell or spermatogonia. By real-time RT-PCR analysis, we found that human STK31 was significantly decreased in the testicular tissue of patients without germ cells. We also found the transcript of mouse Stk31 was detectable throughout spermatogenesis. We generated polyclonal antibodies to KARCA1 and STK31. Western blot analysis and immunohistochemical staining were performed to study the expression pattern of KARCA1 and STK31. The KARCA1 protein was detectable in the cytoplasm of spermatogonia, spermatocytes and spermatid. IHC shows that Stk31 was expressed in spermatogonia and spermatocytes. By immunofliuorescence staining analysis of GC-1 spg cells with anti-STK31 and γ-tubulin, Stk31 was colocalized with γ-tubulin at the spindle pole/ centrosome. Many cell-cycle regulatory molecules are found at centrosomes. The kinase domain of STK31 has evolutionary conservation with BubR1. Therefore we hypothesize that STK31 is involved in cell-cycle checkpoint in a germ cell-specific manner.

    Contents Abstract in Chinese...........................................................1 Abstract in English...........................................................2 Acknowledgements..............................................................4 Contents......................................................................5 Contents of Figures and Appendix..............................................9 Abbreviation.................................................................11 1 INTRODUCTION.............................................................12 1.1 Pathogenesis of male infertility....................................12 1.2 Process of spermatogenesis..........................................12 1.2.1 Hormonal interaction Process of spermatogenesis.....................12 1.2.2 Spermatogenesis.....................................................13 1.3 Sterile genes.......................................................14 1.4 Cell-cycle releated genes involve in spermatogenesis................14 1.5 Candidate gene 1 – KARCA1..........................................16 1.6 Candidate gene 2 – STK31...........................................17 1.6.1 The pathological mechanism of spermatogenic defect..................17 1.6.2 Spermatogenia-specific genes are strong candidates of sterile genes...17 1.6.3 Studies on spermatogonia-specific genes and their therapeutic implication...........................................................19 2 MATERIALS AND METHODS....................................................21 2.1 Total RNA isolation..................................................21 2.1.1 Materials........................................................21 2.1.2 Method...........................................................21 2.2 Reverse Transcription-Polymerase Chain Reaction, RT-PCR..............22 2.2.1 Materials........................................................22 2.2.2 Method...........................................................25 2.3 Real-Time RT-PCR.....................................................26 2.3.1 Materials........................................................26 2.3.2 Method...........................................................27 2.4 Statistical analysis.................................................28 2.4.1 Materials........................................................28 2.4.2 Method...........................................................28 2.5 Antibody generation..................................................29 2.6 SDS-polyacrylamide Gel Electrophoresis...............................30 2.6.1 Materials........................................................30 2.6.2 Method...........................................................31 2.7 Western Blot..........................................................31 2.7.1 Materials........................................................31 2.7.2 Method...........................................................32 2.8 Immunohistochemistry staining, IHC....................................33 2.8.1 Materials..........................................................33 2.8.2 Method...........................................................33 2.9 Culture and subculture GC-1 spg cells...................................36 2.9.1 Materials..........................................................36 2.9.2 Method...........................................................37 2.10 Cryopreservation of cultured cells.....................................37 2.10.1 Materials..........................................................37 2.10.2 Method...........................................................37 2.11 Immunofluorescence staining............................................38 2.11.1 Materials..........................................................38 2.11.2 Method...........................................................38 3 RESULT...................................................................40 3.1 Down-regulation of KARCA1 and STK31 genes in infertile men...........40 3.2 KARCA1 transcripts are most abundant in the human and mouse testes...40 3.3 KARCA1 transcripts are expressed from the testes of postnatal day1 to the adult in mouse...................................................40 3.4 KARCA1 protein is expressed in spermatogonia, spermatocytes and spermatid............................................................41 3.5 STK31 transcripts are expressed from the testes of postnatal day1 to the adult mouse......................................................41 3.6 STK31 are exclusively expressed in the human and mouse germ cells....42 3.7 STK 31 was located at the centrosome of GC-1 spg cells...............42 4 DISCUSSION...............................................................43 4.1 The role of KARCA1 in human reproduction.............................43 4.2 STK31................................................................45 5 REFERENCES...............................................................49 Resume.......................................................................79 Contents of Figures and Appendix Figure 1. Real-time RT-PCR for KARCA1 in the human testes. 59 Figure 2. Real-time RT-PCR for STK31 in the human testes. 60 Figure 3. RT-PCR analysis of KARCA1 gene expression in multiple mouse tissues. 61 Figure 4. RT-PCR analysis of KARAC1 gene expression in multiple human tissues. 62 Figure 5. Expression during of the KARCA1 gene during testicular development of mouse. 63 Figure 6. Western Blot analysis of KARCA1. 64 Figure 7. KARCA1 protein is expressed in spermatogonia, spermatocytes and spermatid. 65 Figure 8. Expression of STK31 during testicular development of mouse. 66 Figure 9. RT-PCR analysis of STK31 in multiple mouse tissues. 67 Figure 10. RT-PCR analysis of STK31 in multiple human tissues. 68 Figure 11. Western Blot analysis of STK31. 69 Figure 12. STK31 protein is expressed in spermatogonia and spermatocytes. 70 Figure13. Immunofliuorescence staining of GC-1 spg cells with antibodies to STK31 and γ-tubulin. 71 Appendix 1. Known mouse genes expressed in spermatogonia but not in somatic tissues. 72 Appendix 2. New spermatogonially expressed, germ-cell-specific genes in mouse, and their human orthologs 73 Appendix 3. KARCA1 (Hs. 507290) expression profile by analysis of EST counts . 74 Appendix 4. Cell-cycle regulators which are significantly down-regulated in infertile men identified by microarray analysis. 75 Appendix 5. The functional domains of KARCA1. 76 Appendix 6. The functional domains of STK31. 77 Appendix 7. Phylogenetic analysis of human protein kinase family. 78 Appendix 8. Stk31 expression in the oocyte and preimplantation embryos. 79

    Reference

    Allan,C.M., Garcia,A., Spaliviero,J., Zhang,F.P., Jimenez,M., Huhtaniemi,I., and Handelsman,D.J. Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology. 145(4), 1587-1593 (2004).
    Baker,D.J., Chen,J., and van Deursen,J.M. The mitotic checkpoint in cancer and aging: what have mice taught us? Curr. Opin. Cell Biol. 17(6), 583-589 (2005).
    Baker,D.J., Jeganathan,K.B., Cameron,J.D., Thompson,M., Juneja,S., Kopecka,A., Kumar,R., Jenkins,R.B., de Groen,P.C., Roche,P., and van Deursen,J.M. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36(7), 744-749 (2004).
    Baker,S.M., Bronner,C.E., Zhang,L., Plug,A.W., Robatzek,M., Warren,G., Elliott,E.A., Yu,J., Ashley,T., Arnheim,N., Flavell,R.A., and Liskay,R.M. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell. 82(2), 309-319 (1995).
    Beqqali,A., Kloots,J., Ward-van,O.D., Mummery,C., and Passier,R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells. (2006).
    Berthet,C., Aleem,E., Coppola,V., Tessarollo,L., and Kaldis,P. Cdk2 knockout mice are viable. Curr. Biol. 13(20), 1775-1785 (2003).
    Charier,G., Couprie,J., pha-Bazin,B., Meyer,V., Quemeneur,E., Guerois,R., Callebaut,I., Gilquin,B., and Zinn-Justin,S. The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure. 12(9), 1551-1562 (2004).
    Cho,C., Willis,W.D., Goulding,E.H., Jung-Ha,H., Choi,Y.C., Hecht,N.B., and Eddy,E.M. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat. Genet. 28(1), 82-86 (2001).
    Clark,A.T., Bodnar,M.S., Fox,M., Rodriquez,R.T., Abeyta,M.J., Firpo,M.T., and Pera,R.A. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13(7), 727-739 (2004).
    Cobb,J. and Handel,M.A. Dynamics of meiotic prophase I during spermatogenesis: from pairing to division. Semin. Cell Dev. Biol. 9(4), 445-450 (1998).
    Cooke,H.J. and Saunders,P.T. Mouse models of male infertility. Nat. Rev. Genet. 3(10), 790-801 (2002).
    Costoya,J.A., Hobbs,R.M., Barna,M., Cattoretti,G., Manova,K., Sukhwani,M., Orwig,K.E., Wolgemuth,D.J., and Pandolfi,P.P. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 36(6), 653-659 (2004).
    Craft,I., Tsirigotis,M., Courtauld,E., and Farrer-Brown,G. Testicular needle aspiration as an alternative to biopsy for the assessment of spermatogenesis. Hum. Reprod. 12(7), 1483-1487 (1997).
    de Rooij,D.G. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 121(3), 347-354 (2001).
    Diederichs,S., Baumer,N., Ji,P., Metzelder,S.K., Idos,G.E., Cauvet,T., Wang,W., Moller,M., Pierschalski,S., Gromoll,J., Schrader,M.G., Koeffler,H.P., Berdel,W.E., Serve,H., and Muller-Tidow,C. Identification of interaction partners and substrates of the cyclin A1-CDK2 complex. J. Biol. Chem. 279(32), 33727-33741 (2004).
    Doxsey,S., Zimmerman,W., and Mikule,K. Centrosome control of the cell cycle. Trends Cell Biol. 15(6), 303-311 (2005).
    Foresta,C., Ferlin,A., Bettella,A., Rossato,M., and Varotto,A. Diagnostic and clinical features in azoospermia. Clin. Endocrinol. (Oxf). 43(5), 537-543 (1995).
    Fujino,R.S., Ishikawa,Y., Tanaka,K., Kanatsu-Shinohara,M., Tamura,K., Kogo,H., Shinohara,T., and Hara,T. Capillary morphogenesis gene (CMG)-1 is among the genes differentially expressed in mouse male germ line stem cells and embryonic stem cells. Mol. Reprod. Dev. 73(8), 955-966 (2006).
    Gaurishankar Manandhar, Heide Schatten, and Peter Sutovsky Centrosome Reduction During Gametogenesis and Its Significance. Bio. Reprod. 72, 2–13 (2005)
    Geijsen,N., Horoschak,M., Kim,K., Gribnau,J., Eggan,K., and Daley,G.Q. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 427(6970), 148-154 (2004).
    Gianotten,J., Westerveld,G.H., Leschot,N.J., Tanck,M.W., Lilford,R.J., Lombardi,M.P., and van,d., V Familial clustering of impaired spermatogenesis: no evidence for a common genetic inheritance pattern. Hum. Reprod. 19(1), 71-76 (2004).
    Girard, F., Strausfeld, U., Fernandez, A., and Lamb, N. J. C. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169–1179 (1991).
    Hackstein,J.H., Hochstenbach,R., and Pearson,P.L. Towards an understanding of the genetics of human male infertility: lessons from flies. Trends Genet. 16(12), 565-572 (2000).
    Hanks,S., Coleman,K., Reid,S., Plaja,A., Firth,H., Fitzpatrick,D., Kidd,A., Mehes,K., Nash,R., Robin,N., Shannon,N., Tolmie,J., Swansbury,J., Irrthum,A., Douglas,J., and Rahman,N. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat. Genet. 36(11), 1159-1161 (2004).
    Haywood,M., Spaliviero,J., Jimemez,M., King,N.J., Handelsman,D.J., and Allan,C.M. Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology. 144(2), 509-517 (2003).
    Honarpour,N., Du,C., Richardson,J.A., Hammer,R.E., Wang,X., and Herz,J. Adult Apaf-1-deficient mice exhibit male infertility. Dev. Biol. 218(2), 248-258 (2000).
    Hubner,K., Fuhrmann,G., Christenson,L.K., Kehler,J., Reinbold,R., De La,F.R., Wood,J., Strauss,J.F., III, Boiani,M., and Scholer,H.R. Derivation of oocytes from mouse embryonic stem cells. Science. 300(5623), 1251-1256 (2003).
    Jones,L.S. and Berndtson,W.E. A quantitative study of Sertoli cell and germ cell populations as related to sexual development and aging in the stallion. Biol. Reprod. 35(1), 138-148 (1986).
    Kasai,S., Chuma,S., Motoyama,N., and Nakatsuji,N. Haploinsufficiency of Bcl-x leads to male-specific defects in fetal germ cells: differential regulation of germ cell apoptosis between the sexes. Dev. Biol. 264(1), 202-216 (2003).
    Kostich,M., English,J., Madison,V., Gheyas,F., Wang,L., Qiu,P., Greene,J., and Laz,T.M. Human members of the eukaryotic protein kinase family. Genome Biol. 3(9), RESEARCH0043 (2002).
    K.R. Lacey et al., Cyclin-dependent kinase control of centrosome duplication, Proc. Natl. Acad. Sci. U. S. A. 96 (1999), pp. 2817–2822.
    Lahn,B.T. and Page,D.C. Functional coherence of the human Y chromosome. Science. 278(5338), 675-680 (1997).
    Levchenko,A., Bruck,J., and Sternberg,P.W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. U. S. A. 97(11), 5818-5823 (2000).
    Lilford,R., Jones,A.M., Bishop,D.T., Thornton,J., and Mueller,R. Case-control study of whether subfertility in men is familial. BMJ. 309(6954), 570-573 (1994).
    Liu,D., Matzuk,M.M., Sung,W.K., Guo,Q., Wang,P., and Wolgemuth,D.J. Cyclin A1 is required for meiosis in the male mouse. Nat. Genet. 20(4), 377-380 (1998).
    McElreavey,K. and Krausz,C. Sex Chromosome Genetics '99. Male infertility and the Y chromosome. Am. J. Hum. Genet. 64(4), 928-933 (1999).
    Meister,G., Eggert,C., and Fischer,U. SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol. 12(10), 472-478 (2002).
    Meng-Fu Bryan Tsou and Tim Stearns Controlling centrosome number: licenses and blocks Curr. Opin. Cell Biol. 18:74–78 2006.
    Miyamoto,T., Hasuike,S., Yogev,L., Maduro,M.R., Ishikawa,M., Westphal,H., and Lamb,D.J. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 362(9397), 1714-1719 (2003).
    Mosavi,L.K., Cammett,T.J., Desrosiers,D.C., and Peng,Z.Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13(6), 1435-1448 (2004).
    O'Donnell,L., Robertson,K.M., Jones,M.E., and Simpson,E.R. Estrogen and spermatogenesis. Endocr. Rev. 22(3), 289-318 (2001).
    Okabe,M., Ikawa,M., and Ashkenas,J. Male infertility and the genetics of spermatogenesis. Am. J. Hum. Genet. 62(6), 1274-1281 (1998).
    Ortega,S., Prieto,I., Odajima,J., Martin,A., Dubus,P., Sotillo,R., Barbero,J.L., Malumbres,M., and Barbacid,M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 35(1), 25-31 (2003).
    Palermo,G., Joris,H., Devroey,P., and Van Steirteghem,A.C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 340(8810), 17-18 (1992).
    Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–971(1992).
    Patrick Meraldi, Jiri Lukas, Andrew M. Fry, Jiri Bartek and Erich A. Nigg Centrosome duplication in mammalian somatic cells requires E2F and Cdk2– Cyclin A. Nat. Cell Biol. 1, 88-93 (1999)
    Prag,S. and Adams,J.C. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals. BMC. Bioinformatics. 4, 42 (2003).
    Ron Balczon Overexpression of cyclin A in human HeLa cells induces detachment of kinetochores and spindle pole/centrosome overproduction Chromosoma 110, 381–392 (2001)
    Schlegel,P.N. Testicular sperm extraction: microdissection improves sperm yield with minimal tissue excision. Hum. Reprod. 14(1), 131-135 (1999).
    Silber,S.J. Evaluation and treatment of male infertility. Clin. Obstet. Gynecol. 43(4), 854-888 (2000).
    Simoni,M., Kamischke,A., and Nieschlag,E. Current status of the molecular diagnosis of Y-chromosomal microdeletions in the work-up of male infertility. Initiative for international quality control. Hum. Reprod. 13(7), 1764-1768 (1998).
    Skaletsky,H., Kuroda-Kawaguchi,T., Minx,P.J., Cordum,H.S., Hillier,L., Brown,L.G., Repping,S., Pyntikova,T., Ali,J., Bieri,T., Chinwalla,A., Delehaunty,A., Delehaunty,K., Du,H., Fewell,G., Fulton,L., Fulton,R., Graves,T., Hou,S.F., Latrielle,P., Leonard,S., Mardis,E., Maupin,R., McPherson,J., Miner,T., Nash,W., Nguyen,C., Ozersky,P., Pepin,K., Rock,S., Rohlfing,T., Scott,K., Schultz,B., Strong,C., Tin-Wollam,A., Yang,S.P., Waterston,R.H., Wilson,R.K., Rozen,S., and Page,D.C. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 423(6942), 825-837 (2003).
    Sweeney,C., Murphy,M., Kubelka,M., Ravnik,S.E., Hawkins,C.F., Wolgemuth,D.J., and Carrington,M. A distinct cyclin A is expressed in germ cells in the mouse. Development. 122(1), 53-64 (1996).
    Tanaka,K., Tamura,H., Tanaka,H., Katoh,M., Futamata,Y., Seki,N., Nishimune,Y., and Hara,T. Spermatogonia-dependent expression of testicular genes in mice. Dev. Biol. 246(2), 466-479 (2002).
    Taylor,S.S., Scott,M.I., and Holland,A.J. The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation. Chromosome. Res. 12(6), 599-616 (2004).
    Teng,Y.N., Lin,Y.M., Lin,Y.H., Tsao,S.Y., Hsu,C.C., Lin,S.J., Tsai,W.C., and Kuo,P.L. Association of a single-nucleotide polymorphism of the deleted-in-azoospermia-like gene with susceptibility to spermatogenic failure. J. Clin. Endocrinol. Metab. 87(11), 5258-5264 (2002).
    Thomson,T. and Lasko,P. Tudor and its domains: germ cell formation from a Tudor perspective. Cell Res. 15(4), 281-291 (2005).
    Toyooka,Y., Tsunekawa,N., Akasu,R., and Noce,T. Embryonic stem cells can form germ cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 100(20), 11457-11462 (2003).
    Wang,P.J., McCarrey,J.R., Yang,F., and Page,D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 27(4), 422-426 (2001).
    Yan,W., Ma,L., Burns,K.H., and Matzuk,M.M. Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc. Natl. Acad. Sci. U. S. A. 101(20), 7793-7798 (2004).
    Yan,W., Rajkovic,A., Viveiros,M.M., Burns,K.H., Eppig,J.J., and Matzuk,M.M. Identification of Gasz, an evolutionarily conserved gene expressed exclusively in germ cells and encoding a protein with four ankyrin repeats, a sterile-alpha motif, and a basic leucine zipper. Mol. Endocrinol. 16(6), 1168-1184 (2002).
    Yang,R., Morosetti,R., and Koeffler,H.P. Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Res. 57(5), 913-920 (1997).
    Yang,Z.W., Wreford,N.G., and de Kretser,D.M. A quantitative study of spermatogenesis in the developing rat testis. Biol. Reprod. 43(4), 629-635 (1990).
    Y. Matsumoto and J.L. Maller, A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry, Science 306, 885–888 (2004).
    Yu,Z., Guo,R., Ge,Y., Ma,J., Guan,J., Li,S., Sun,X., Xue,S., and Han,D. Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol. Reprod. 69(1), 37-47 (2003).
    Yuan,L., Liu,J.G., Zhao,J., Brundell,E., Daneholt,B., and Hoog,C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell. 5(1), 73-83 (2000).
    Zindy, F., Lamas, E., Chenivesse, X., Sobczak, J., Wang, J., Fesquet, D., Henglein, B., and Bre´chot, C. Cyclin A is required in S phase in normal epithelial cells. Biochem. Biophys. Res. Commun. 182, 1144–1154 (1992).

    下載圖示
    2008-08-11公開
    QR CODE