簡易檢索 / 詳目顯示

研究生: 張翔甯
Chang, Hsiang-Ning
論文名稱: 探討酪酸菌所產細菌素對困難梭狀桿菌的抑制效果
Inhibition of Clostridium difficile by Clostridium butyricum MIYAIRI produced bacteriocin
指導教授: 黃一修
Huang, I-Hsiu
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 95
中文關鍵詞: 困難梭狀芽孢桿菌酪酸菌細菌素
外文關鍵詞: Clostridium difficile, C. butyricum MIYAIRI 588, bacteriocin
相關次數: 點閱:42下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 困難梭狀芽孢桿菌是已知造成院內感染的致病菌,主要由抗生素使用而造成腸內共生菌不平衡,使得困難梭狀芽孢桿菌伺機於腸道內繁殖。糞便轉殖療法是目前有效治療困難梭狀芽孢桿菌感染性疾病的方法,已知細菌可透過產生代謝物或蛋白質等,以對抗其他菌種。在本篇研究中,我們試著了解有哪些有效物質被腸道菌株以及益生菌釋放,以對抗困難梭狀芽孢桿菌。在本篇研究中,實驗結果顯示酪酸菌所釋放的物質對於抑制困難梭狀芽孢桿菌有更好的效果。已知酪酸菌是會產生孢子的格蘭氏陽性菌,並且可治療或延緩腸道致病菌所引起的病徵,但對於酪酸菌如何有效對抗困難梭狀芽孢桿菌的相關研究很少,因此我們試著找出可能的成因。在先前文獻中,已發現酪酸菌可以表現細菌素,因此我們想了解在酪酸菌所釋放物質中,細菌素是否扮演有效抑制困難梭狀芽孢桿菌的角色,在體外實驗中我們證實酪酸菌確實可以表現並產生細菌素,此外,我們製造重組細菌素蛋白以進行後續實驗。首先我們了解重組細菌素蛋白(crude CBM-B)是一個對酸鹼值不敏感,但對蛋白酶敏感的蛋白,而在溫度的感受性上是相對的不敏感。進一步我們發現CBM-B可以有效抑制困難梭狀芽孢桿菌,並且對梭狀芽孢桿菌屬有相對專一性。雖然CBM-B可抑制細菌,但我們未發現CBM-B可有效作用於孢子,另外,我們發現CBM-B可抑制困難梭狀芽孢桿菌所產毒素的基因表現,且可能透過抑制毒素正向調控因子而調節。在體外動物實驗中,透過肛門給予CBM-B,我們進而證明CBM-B可對抗腸道中的困難梭狀芽孢桿菌。總結而言,我們推論酪酸菌可透過釋放CBM-B而有效抑制困難梭狀芽孢桿菌,並作為未來新型抑制劑以治療困難梭狀芽孢桿菌感染症狀。

    Clostridium difficile (C. difficile) is a gram-positive, spore-forming nosocomial pathogen and Clostridium difficile infection (CDI) can lead to antibiotic-associated pseudo-membranous colitis. The success of fecal material transplantation in the treatment of C. difficile infections indicated that beneficial bacteria are capable of inhibiting C. difficile. Moreover, it has been known that bacteria secreted metabolites and proteins can inhibit other bacteria. In this study, we screened the supernatant of multiple gut commensals for their inhibitory ability to inhibit C. difficile. Supernatants of C. butyricum MIYAIRI 588 strain (CBM588), a commercially available probiotic was shown to have the highest inhibition compared to others. CBM 588 is an anaerobic spore forming gram-positive bacteria which has been used for the treatment of enteropathogens but its role in C. difficile infection has not been evaluated in detail. Characterization of the cultural supernatant from CBM 588 suggested that a proteinaceous substance is involved in inhibiting C. difficile growth in vitro. Based on bioinformatics analysis and literature search, we identified a bacteriocin-like gene in CBM 588. PCR and qRT-PCR analysis of CBM 588 demonstrated the same gene existed and the transcription of this gene is highest during late-log growth phase. Western blot analysis demonstrated that the bacteriocin is present in the supernatant of CBM 588. Importantly, recombinant CBM 588 bacteriocin (crude CBM-B) was demonstrated to be sufficient for inhibition of C. difficile. In addition, the crude CBM-B is pH stable, protease sensitive, and relatively temperature stable. Further analysis revealed a narrow spectrum of activity for bacteriocin (CBM-B). CBM-B was unable to alter spore germination efficiency and outgrowth. Interestingly, when applied at sub-lethal concentration, CBM-B was able to suppress tcdA and tcdB expression in part by decreasing the expression of a toxin regulator. Lastly, we demonstrated that intra-rectal administration of CBM-B was able to decrease the survival of C. difficile in colons of mice. Overall, we concluded that CBM-B from CBM 588 is a potential inhibitor against C. difficile which could be used as therapeutic treatment for CDI.

    中文摘要 I ABSTRACT II 致謝 III CONTENTS IV ABBREVIATION VIII CHAPTER I 1 INTRODUCTION 1 1.1 Clostridium difficile infection (CDI) and epidemiology 1 1.2 C. difficile pathogenesis 3 1.3 Therapeutic treatment of CDI 3 1.4 Possible mechanism behind probiotic inhibiting C. difficile 6 1.5 Bacteriocin 7 1.6 Characteristic of Clostridium butyricum MIYAIRI 588 8 1.7 Rationale 10 CHAPTER II 11 MATERIAL AND METHODS 11 2.1 Materials 11 2.1.1 Bacterial strains 11 2.1.2 Cell line 12 2.1.3 Animal 12 2.2 Methods 13 2.2.1 Bacterial culture 13 2.2.2 Co-culture assay 14 2.2.3 Cloning and purification of recombinant bacteriocin (crude CBM-B) 15 2.2.4 Fast performance liquid chromatography (FPLC) 16 2.2.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 17 2.2.6 Western blot 17 2.2.7 Spot-on-lawn assay 18 2.2.8 Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) assay 19 2.2.9 Inhibitory kinetic assay and time kill assay 20 2.2.10 C. difficile spore preparation 21 2.2.11 C. difficile spore germination assay 21 2.2.12 Spore outgrowth assay 22 2.2.13 CBM-B and vancomycin co-treatment assay 22 2.2.14 Ribonucleic acid (RNA) extraction of bacteria 23 2.2.15 Quantitative real time transcription-polymerase chain reaction (qRT-PCR) 25 2.2.16 Cell culture 26 2.2.17 Cell viability assay 27 2.2.18 Animal model of CDI 28 2.2.19 CBM 588 treatment of mice in vivo 29 2.2.20 CBM-B treatment of mice ex vivo 29 2.2.21 Preparation of C. difficile suspension for rectal inoculation 30 2.2.22 Rectal administration of CBM-B in vivo 31 2.2.23 Polymerase chain reaction (PCR) product identification 31 2.2.24 Animal model for collection of anti-crude CBM-B 32 2.2.25 The enzyme-linked immunosorbent assay (ELISA) 32 2.2.23 Statistical analysis 33 CHAPTER III 34 RESULTS 34 3.1 Supernatant of C. butyricum MIYAIRI 588 and E. rectale could inhibit C. difficile growth in vitro 34 3.2 Temperature and pH decreased the inhibitory effect of CBM 588 and E. rectale supernatant 35 3.3 C. butyricum MIYAIRI 588 express ORF 3, a putative bacteriocin-like gene 36 3.4 Cloning, overexpression, and purification of recombinant CBM-B 36 3.5 Characterization of pH, protease, and heat effects on crude CBM-B inhibitory ability 37 3.6 CBM-B has narrow anti-bacterial spectrum 38 3.7 CBM-B elicits inhibitory effectiveness on C. difficile 39 3.8 CBM-B could inhibit C. difficile produced toxin A and toxin B 40 3.9 CBM-B has no ability to inhibit C. difficile spore germination and outgrowth 41 3.10 Combination of vancomycin and CBM-B provide superior effect against C. difficile 42 3.11 CBM-B is not cytotoxicity to Caco-2 cells 42 3.12 The effects of CBM 588 treatment on CDI 43 3.13 Therapeutic availability of CBM-B on CDI ex vivo and in vivo 43 CHAPTER IV 45 DISCUSSION 45 REFERENCES 53 TABLES 62 Table 1. Gut normal flora used in this study 62 Table 2. The strains of C. difficile used in this study 63 Table 3. CBM-B spectrum of gram-positive and gram-negative bacteria 64 Table 4. Oligonucleotide primers used in this study 65 Figures 66 Figure 1. The inhibitory effects of gut flora and CBM 588 supernatant on C. difficile growth 66 Figure 2. Temperature and pH decreased the inhibitory ability of CBM 588 and E. rectale supernatant 67 Figure 3. Further characterization of CBM588 supernatant 68 Figure 4. The transcriptional profile of bacteriocin (CBM-B) in CBM 588 69 Figure 5. Purification and protein sequence of recombinant bacteriocin (crude CBM-588) 70 Figure 6. Protein expression of CBM-B in the supernatant of CBM 588 71 Figure 7. Characterization of pH, protease, and heat effects on crude CBM-B inhibitory ability 72 Figure 8. Separation of crude CBM-B 73 Figure 9. Determination of the kinetic of CBM-B inhibitory effects on C. difficile 74 Figure 10. Evaluation of inhibitory effect of CBM-B on C. difficile 75 Figure 11. The killing effects of CBM-B on C. difficile 76 Figure 12. Effect of sub-lethal CBM-B on C. difficile toxin and toxin regulator gene expression 77 Figure 13. The effect of CBM-B treatment on C. difficile spore germination 78 Figure 14. The impact of CBM-B treatment on C. difficile spore outgrowth 79 Figure 15. The combination effect of vancomycin combined with CBM-B 80 Figure 16. Cytotoxicity of CBM-B toward Caco-2 cells 81 Figure 17. Animal model of C. difficile infection (CDI) 82 Figure 18. The effects of CBM 588 administration in vivo 83 Figure 19 The efficacy of CBM 588 treatment in vivo 84 Figure 20. The administration of CBM-B provides effectiveness on CDI ex vivo 85 Figure 21. Animal model of CDI and CBM-B administration in vivo 86 Figure 22. The protective role of CBM-B on CDI in vivo. 87 Supplementary material 88 A. Chemicals and reagents 88 B. Bacteria culture medium 89 C. SDS-PAGE and western blot used buffer and recipes 90 D. Protein purification buffer lists 92 E. The recipes of other buffers 93 SUPPLEMENTARY FIGURES 94 Figure A. The CBM 588 was examined for PCR amplification 94 Figure B. The ORF of pCBM 94 Figure C. Animal model for collection of anti-crude CBM-B 95 Figure D. The evaluation of antibody titers of submandibular blood collection 95 Figure E. The determination of crude CBM-B activity by Spot-on-lawn assay 95

    1. Leffler, D.A. and J.T. Lamont, Clostridium difficile Infection. N Engl J Med, 2015. 373(3): p. 287-8.
    2. Cojocariu, C., et al., Clostridium difficile infection and inflammatory bowel disease. Turk J Gastroenterol, 2014. 25(6): p. 603-10.
    3. Chen, Y.B., et al., Molecular epidemiology of Clostridium difficile in a tertiary hospital of China. J Med Microbiol, 2014. 63(Pt 4): p. 562-9.
    4. Popoff, M.R., et al., Actin-specific ADP-ribosyltransferase produced by a Clostridium difficile strain. Infect Immun, 1988. 56(9): p. 2299-306.
    5. Razaq, N., et al., Infection of hamsters with historical and epidemic BI types of Clostridium difficile. J Infect Dis, 2007. 196(12): p. 1813-9.
    6. Labbe, A.C., et al., Clostridium difficile infections in a Canadian tertiary care hospital before and during a regional epidemic associated with the BI/NAP1/027 strain. Antimicrob Agents Chemother, 2008. 52(9): p. 3180-7.
    7. Valiente, E., M.D. Cairns, and B.W. Wren, The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect, 2014. 20(5): p. 396-404.
    8. Kuijper, E.J., et al., Update of Clostridium difficile infection due to PCR ribotype 027 in Europe, 2008. Euro Surveill, 2008. 13(31).
    9. Lee, J.C., et al., Clostridium difficile Infections in Medical Intensive Care Units of a Medical Center in Southern Taiwan: Variable Seasonality and Disease Severity. PLoS One, 2016. 11(8): p. e0160760.
    10. Hung, Y.P., et al., Clinical impact of Clostridium difficile colonization. J Microbiol Immunol Infect, 2015. 48(3): p. 241-8.
    11. Hung, Y.P., et al., Clostridium difficile ribotype 126 in southern Taiwan: a cluster of three symptomatic cases. Anaerobe, 2014. 30: p. 188-92.
    12. Hung, Y.P., et al., Impact of toxigenic Clostridium difficile colonization and infection among hospitalized adults at a district hospital in southern Taiwan. PLoS One, 2012. 7(8): p. e42415.
    13. Cohen, S.H., et al., Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol, 2010. 31(5): p. 431-55.
    14. Bouza, E., Consequences of Clostridium difficile infection: understanding the healthcare burden. Clin Microbiol Infect, 2012. 18 Suppl 6: p. 5-12.
    15. McGlone, S.M., et al., The economic burden of Clostridium difficile. Clin Microbiol Infect, 2012. 18(3): p. 282-9.
    16. Nathwani, D., et al., Cost-effectiveness analysis of fidaxomicin versus vancomycin in Clostridium difficile infection. J Antimicrob Chemother, 2014. 69(11): p. 2901-12.
    17. Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev, 2005. 18(2): p. 247-63.
    18. Soriano, M.M. and S. Johnson, Treatment of Clostridium difficile infections. Infect Dis Clin North Am, 2015. 29(1): p. 93-108.
    19. Bauer, M.P., et al., European Society of Clinical Microbiology and Infectious Diseases (ESCMID): treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect, 2009. 15(12): p. 1067-79.
    20. Shannon-Lowe, J., et al., Prevention and medical management of Clostridium difficile infection. BMJ, 2010. 340: p. c1296.
    21. Sammons, J.S., P. Toltzis, and T.E. Zaoutis, Clostridium difficile Infection in children. JAMA Pediatr, 2013. 167(6): p. 567-73.
    22. Johnson, S., et al., Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis, 2014. 59(3): p. 345-54.
    23. Surawicz, C.M., et al., Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol, 2013. 108(4): p. 478-98; quiz 499.
    24. Rubinstein, E. and Y. Keynan, Vancomycin revisited - 60 years later. Front Public Health, 2014. 2: p. 217.
    25. Keller, P.M. and M.H. Weber, Rational Therapy of Clostridium difficile Infections. Viszeralmedizin, 2014. 30(5): p. 304-9.
    26. Hollister, E.B., C. Gao, and J. Versalovic, Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology, 2014. 146(6): p. 1449-58.
    27. Bakken, J.S., et al., Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol, 2011. 9(12): p. 1044-9.
    28. Smits, L.P., et al., Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013. 145(5): p. 946-53.
    29. Eiseman, B., et al., Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery, 1958. 44(5): p. 854-9.
    30. Schwan, A., et al., Relapsing Clostridium difficile enterocolitis cured by rectal infusion of normal faeces. Scand J Infect Dis, 1984. 16(2): p. 211-5.
    31. Borody, T.J. and J. Campbell, Fecal microbiota transplantation: techniques, applications, and issues. Gastroenterol Clin North Am, 2012. 41(4): p. 781-803.
    32. Borody, T.J., et al., Bowel-flora alteration: a potential cure for inflammatory bowel disease and irritable bowel syndrome? Med J Aust, 1989. 150(10): p. 604.
    33. Ahmed, J., et al., Impact of probiotics on colonic microflora in patients with colitis: a prospective double blind randomised crossover study. Int J Surg, 2013. 11(10): p. 1131-6.
    34. Bernardo, W.M., et al., Effectiveness of probiotics in the prophylaxis of necrotizing enterocolitis in preterm neonates: a systematic review and meta-analysis. J Pediatr (Rio J), 2013. 89(1): p. 18-24.
    35. Rayes, N., et al., Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation--a randomized, double-blind trial. Am J Transplant, 2005. 5(1): p. 125-30.
    36. Singh, V.P., et al., Role of probiotics in health and disease: a review. J Pak Med Assoc, 2013. 63(2): p. 253-7.
    37. Doron, S. and D.R. Snydman, Risk and safety of probiotics. Clin Infect Dis, 2015. 60 Suppl 2: p. S129-34.
    38. Hempel, S., et al., Safety of probiotics used to reduce risk and prevent or treat disease. Evid Rep Technol Assess (Full Rep), 2011(200): p. 1-645.
    39. Johnson, S., et al., Is primary prevention of Clostridium difficile infection possible with specific probiotics? Int J Infect Dis, 2012. 16(11): p. e786-92.
    40. Gorbach, S.L., Probiotics and gastrointestinal health. Am J Gastroenterol, 2000. 95(1 Suppl): p. S2-4.
    41. Castagliuolo, I., et al., Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun, 1999. 67(1): p. 302-7.
    42. Kuroiwa, T., et al., [Preventive effect of Clostridium butyricum M588 against the proliferation of Clostridium difficile during antimicrobial therapy]. Kansenshogaku Zasshi, 1990. 64(11): p. 1425-32.
    43. Bermudez-Brito, M., et al., Probiotic mechanisms of action. Ann Nutr Metab, 2012. 61(2): p. 160-74.
    44. Mills, J.P., K. Rao, and V.B. Young, Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol, 2018. 34(1): p. 3-10.
    45. Ripert, G., et al., Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium difficile and Bacillus cereus Toxins. Antimicrob Agents Chemother, 2016. 60(6): p. 3445-54.
    46. Spinler, J.K., et al., Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis. Infect Immun, 2017. 85(10).
    47. Hanchi, H., et al., Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiol, 2017. 12: p. 205-212.
    48. Buffie, C.G., et al., Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature, 2015. 517(7533): p. 205-8.
    49. Gerding, D.N., et al., Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA, 2015. 313(17): p. 1719-27.
    50. Cotter, P.D., C. Hill, and R.P. Ross, Bacteriocins: developing innate immunity for food. Nat Rev Microbiol, 2005. 3(10): p. 777-88.
    51. Riley, M.A. and J.E. Wertz, Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol, 2002. 56: p. 117-37.
    52. Karpinski, T.M. and A.K. Szkaradkiewicz, Characteristic of bacteriocines and their application. Pol J Microbiol, 2013. 62(3): p. 223-35.
    53. Nissen-Meyer, J., et al., Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol, 2009. 10(1): p. 19-37.
    54. Basanta, A., et al., Antimicrobial activity of Enterococcus faecium L50, a strain producing enterocins L50 (L50A and L50B), P and Q, against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers. Int J Food Microbiol, 2008. 125(3): p. 293-307.
    55. Delves-Broughton, J., et al., Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek, 1996. 69(2): p. 193-202.
    56. Marciset, O., et al., Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J Biol Chem, 1997. 272(22): p. 14277-84.
    57. Cintas, L.M., et al., Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol, 2000. 182(23): p. 6806-14.
    58. Nes, I.F. and H. Holo, Class II antimicrobial peptides from lactic acid bacteria. Biopolymers, 2000. 55(1): p. 50-61.
    59. Nilsen, T., I.F. Nes, and H. Holo, Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol, 2003. 69(5): p. 2975-84.
    60. Joerger, M.C. and T.R. Klaenhammer, Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol, 1986. 167(2): p. 439-46.
    61. Jack, R.W., J.R. Tagg, and B. Ray, Bacteriocins of gram-positive bacteria. Microbiol Rev, 1995. 59(2): p. 171-200.
    62. Oman, T.J., et al., Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol, 2011. 7(2): p. 78-80.
    63. Ferraris, L., M.J. Butel, and J. Aires, Antimicrobial susceptibility and resistance determinants of Clostridium butyricum isolates from preterm infants. Int J Antimicrob Agents, 2010. 36(5): p. 420-3.
    64. Gantois, I., et al., Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol, 2006. 72(1): p. 946-9.
    65. Isa, K., et al., Safety assessment of the Clostridium butyricum MIYAIRI 588(R) probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo. Hum Exp Toxicol, 2016. 35(8): p. 818-32.
    66. Nakanishi, S. and M. Tanaka, Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli. Anaerobe, 2010. 16(3): p. 253-7.
    67. Clarke, D.J. and J.G. Morris, Butyricin 7423: a bacteriocin produced by Clostridium butyricum NCIB7423. J Gen Microbiol, 1976. 95(1): p. 67-77.
    68. Takahashi, M., et al., [Antagonistic interaction between Clostridium butyricum and enterohemorrhagic Escherichia coli O157:H7]. Kansenshogaku Zasshi, 1999. 73(1): p. 7-14.
    69. Takahashi, M., et al., Effects of the butyric acid-producing strain Clostridium butyricum MIYAIRI 588 on broiler and piglet zootechnical performance and prevention of necrotic enteritis. Anim Sci J, 2018. 89(6): p. 895-905.
    70. Petrof, E.O., et al., Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. Microbiome, 2013. 1(1): p. 3.
    71. Buckley, A.M., et al., Infection of hamsters with the UK Clostridium difficile ribotype 027 outbreak strain R20291. J Med Microbiol, 2011. 60(Pt 8): p. 1174-80.
    72. McEllistrem, M.C., et al., A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. Clin Infect Dis, 2005. 40(2): p. 265-72.
    73. Hung, Y.P., et al., Predominance of Clostridium difficile Ribotypes 017 and 078 among Toxigenic Clinical Isolates in Southern Taiwan. PLoS One, 2016. 11(11): p. e0166159.
    74. Sorg, J.A. and S.S. Dineen, Laboratory maintenance of Clostridium difficile. Curr Protoc Microbiol, 2009. Chapter 9: p. Unit9A 1.
    75. Lindsay, J.A., T.C. Beaman, and P. Gerhardt, Protoplast water content of bacterial spores determined by buoyant density sedimentation. J Bacteriol, 1985. 163(2): p. 735-7.
    76. Vital, M., et al., A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community. Microbiome, 2013. 1(1): p. 8.
    77. Cerquetti, M., et al., Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. FEMS Immunol Med Microbiol, 2002. 32(3): p. 211-8.
    78. Chen, X., et al., A mouse model of Clostridium difficile-associated disease. Gastroenterology, 2008. 135(6): p. 1984-92.
    79. Wang, Q., et al., Using a Novel Lysin To Help Control Clostridium difficile Infections. Antimicrob Agents Chemother, 2015. 59(12): p. 7447-57.
    80. Rea, M.C., et al., Bioavailability of the anti-clostridial bacteriocin thuricin CD in gastrointestinal tract. Microbiology, 2014. 160(Pt 2): p. 439-45.
    81. Serrano-Villar, S., et al., Gut Bacteria Metabolism Impacts Immune Recovery in HIV-infected Individuals. EBioMedicine, 2016. 8: p. 203-216.
    82. Menard, S., et al., Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut, 2004. 53(6): p. 821-8.
    83. Pankey, G.A. and L.D. Sabath, Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis, 2004. 38(6): p. 864-70.
    84. Di Bella, S., et al., Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel), 2016. 8(5).
    85. Woo, T.D., et al., Inhibition of the cytotoxic effect of Clostridium difficile in vitro by Clostridium butyricum MIYAIRI 588 strain. J Med Microbiol, 2011. 60(Pt 11): p. 1617-25.
    86. Barra-Carrasco, J. and D. Paredes-Sabja, Clostridium difficile spores: a major threat to the hospital environment. Future Microbiol, 2014. 9(4): p. 475-86.
    87. Todorov, S.D., et al., Combined effect of bacteriocin produced by Lactobacillus plantarum ST8SH and vancomycin, propolis or EDTA for controlling biofilm development by Listeria monocytogenes. Rev Argent Microbiol, 2018. 50(1): p. 48-55.
    88. Hutton, M.L., et al., Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett, 2014. 352(2): p. 140-9.
    89. Burke, K.E. and J.T. Lamont, Clostridium difficile infection: a worldwide disease. Gut Liver, 2014. 8(1): p. 1-6.
    90. Yang, S.C., et al., Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol, 2014. 5: p. 241.
    91. Holo, H., O. Nilssen, and I.F. Nes, Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol, 1991. 173(12): p. 3879-87.
    92. Cotter, P.D., An 'Upp'-turn in bacteriocin receptor identification. Mol Microbiol, 2014. 92(6): p. 1159-63.
    93. Brotz, H., et al., Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol, 1998. 30(2): p. 317-27.
    94. Breukink, E. and B. de Kruijff, Lipid II as a target for antibiotics. Nat Rev Drug Discov, 2006. 5(4): p. 321-32.
    95. Lubelski, J., et al., Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci, 2008. 65(3): p. 455-76.
    96. Postma, P.W., J.W. Lengeler, and G.R. Jacobson, Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev, 1993. 57(3): p. 543-94.
    97. Fimland, G., et al., Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci, 2005. 11(11): p. 688-96.
    98. Diep, D.B., et al., Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A, 2007. 104(7): p. 2384-9.
    99. Bieler, S., et al., Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol, 2006. 188(20): p. 7049-61.
    100. Swe, P.M., et al., Mode of action of dysgalacticin: a large heat-labile bacteriocin. J Antimicrob Chemother, 2009. 63(4): p. 679-86.
    101. Iwatani, S., et al., Identification of the genes involved in the secretion and self-immunity of lacticin Q, an unmodified leaderless bacteriocin from Lactococcus lactis QU 5. Microbiology, 2012. 158(Pt 12): p. 2927-35.
    102. Uzelac, G., et al., A Zn-dependent metallopeptidase is responsible for sensitivity to LsbB, a class II leaderless bacteriocin of Lactococcus lactis subsp. lactis BGMN1-5. J Bacteriol, 2013. 195(24): p. 5614-21.
    103. Oppegard, C., et al., Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl Environ Microbiol, 2007. 73(9): p. 2931-8.
    104. Kjos, M., et al., Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol, 2014. 92(6): p. 1177-87.
    105. Bickford, J.S. and H.S. Nick, Conservation of the PTEN catalytic motif in the bacterial undecaprenyl pyrophosphate phosphatase, BacA/UppP. Microbiology, 2013. 159(Pt 12): p. 2444-55.
    106. Gabrielsen, C., et al., Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol, 2014. 80(22): p. 6854-62.
    107. Gabrielsen, C., et al., The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother, 2012. 56(6): p. 2908-15.
    108. Antunes, A., et al., Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res, 2012. 40(21): p. 10701-18.
    109. Dineen, S.S., et al., Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol, 2007. 66(1): p. 206-19.
    110. Tiwari, G., et al., Drug delivery systems: An updated review. Int J Pharm Investig, 2012. 2(1): p. 2-11.
    111. Mossie, K. G., et al., Inhibition of ribonucleic acid polymerase by a bacteriocin from Bacteroides fragilis. Antimicrobial Agents and Chemotherapy, 1981. 20(4): p. 437-442.
    112. Chiara, M., et al. From concept to in vivo testing: Microcontainers for oral drug. delivery. Journal of Controlled Release, 2017. 268(28): p. 343-351

    下載圖示 校內:2023-12-31公開
    校外:2023-12-31公開
    QR CODE