簡易檢索 / 詳目顯示

研究生: 吳承祐
Wu, Cheng-You
論文名稱: 量子糾纏的滑動模式控制
Sliding Mode Control of Quantum Entanglement
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 量子糾纏滑動模式控制量子 Lyapunov 控制量子力學
外文關鍵詞: Quantum Entanglement, Sliding Mode Control, Quantum Lyapunov Control, Quantum Mechanics
相關次數: 點閱:147下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著量子領域快速發展,量子系統控制有許多方法被提出,本論文以量子Lyapunov控制及量子滑動模式控制作為主要兩個控制量子糾纏的方法。在Lyapunov函數控制中,選定末態,進行控制以達到目標糾纏態。在滑動模式控制中,吾人將糾纏測量函數視為滑動面,再以切換控制的方式將系統控制到滑動面上,進而達到穩定。本研究先建立滑動模式控制與量子糾纏的關係,再根據Lyapunov函數穩定法則,推導出滑動模式控制律,將任意狀態控制到目標糾纏態。本論文在滑動控制中加入不確定性參數,使系統在滑動面附近來回做切換,以探討不確定性參數對滑動控制的影響。論文最後比較Lyapunov控制與滑動模式控制運用在量子糾纏應用的優劣性。本論文貢獻有三,一是透過量子Lyapunov控制方法,使二位元純態量子系統達到吾人想要的目標糾纏態,二是建立滑動模式控制與量子糾纏函數之間的橋樑,最後是基於滑動模式控制,使得二位元純態量子系統由任意狀態出發,最後到達目標糾纏態。

    With the rapid development in the field of quantum, numerous methods for controlling quantum systems have been proposed. This paper focuses on two main approaches for controlling quantum entanglement: quantum Lyapunov control and quantum sliding mode control. In Lyapunov function control, a target entangled state is selected, and control is applied to achieve the desired entangled state. In sliding mode control, we treat the entanglement measurement function as a sliding surface and use switching control to guide the system onto the sliding surface, thereby achieving stability. This study first establishes the relationship between sliding mode control and quantum entanglement, and then derives the sliding mode control law based on the Lyapunov stability theorem, which enables arbitrary states to be controlled to the target entangled state. Uncertainty parameters are introduced into the sliding control to explore their impact on the control near the sliding surface. Finally, a comparison is made between Lyapunov control and sliding mode control regarding their advantages and disadvantages in quantum entanglement applications. The contributions of this paper can be summarized as follows: firstly, the quantum Lyapunov control method allows two-qubit pure state quantum systems to achieve the desired target entangled state; secondly, a bridge is established between sliding mode control and quantum entanglement function; and lastly, based on sliding mode control, two-qubit pure state quantum systems can be guided from arbitrary initial states to the target entangled state.

    中文摘要 I 英文摘要 II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 符號表 XVIII 第1章 緒論 1 1.1 文獻回顧 1 1.2 研究動機 3 1.3 論文組織架構 4 第2章 量子系統的數學基礎與控制方法 7 2.1 約化密度矩陣 7 2.2 糾纏測量函數 9 2.2.1 併發(Concurrence)函數 9 2.2.2 糾纏熵(Entropy of Entanglement)函數 11 2.2.3 倫伊熵(Renyi Entropy)函數 12 2.3 量子Lyapunov 控制 13 2.3.1 針對量子疊加態的Lyapunov控制方法 14 2.3.2 量子位元的Lyapunov控制 16 2.4 量子滑動模式控制 (Sliding Mode Control) 18 2.4.1 量子滑動模式控制 18 2.4.2 滑動控制的設計步驟 18 第3章 基於Lyapunov函數的量子純態糾纏控制 21 3.1 併發糾纏函數 21 3.1.1 Lyapunov控制律設計 22 3.1.2 Lyapunov控制律的穩定性分析 24 3.2 糾纏熵糾纏函數 24 3.2.1 Lyapunov控制律設計 25 3.2.2 Lyapunov控制律的穩定性分析 26 3.3 倫伊熵糾纏函數 26 3.3.1 Lyapunov控制律設計 27 3.3.2 Lyapunov控制律的穩定性分析 28 第4章 基於滑動模式的量子糾纏控制 29 4.1 併發糾纏函數 30 4.1.1 滑動模式控制律設計 31 4.1.2 滑動模式控制律的穩定性分析 32 4.2 糾纏熵糾纏函數 32 4.2.1 滑動模式控制律設計 33 4.2.2 滑動模式控制律的穩定性分析 34 4.3 倫伊熵糾纏函數 35 4.3.1 滑動模式控制律設計 35 4.3.2 滑動模式控制律的穩定性分析 36 第5章 控制模擬與驗證 38 5.1 基於Lyapunov函數控制的數值模擬 39 5.1.1 Lyapunov併發函數的數值模擬 41 5.1.2 Lyapunov併發函數加入不確定性參數 49 5.1.3 Lyapunov糾纏熵函數的數值模擬 50 5.1.4 基於Lyapunov三種糾纏測量函數的控制模擬比較 52 5.2 基於滑動模式的糾纏控制數值模擬 56 5.2.1 滑動模式併發與倫伊熵函數的數值模擬 57 5.2.2 基於滑動模式三種糾纏測量函數的控制模擬比較 65 5.3 Lyapunov控制與滑動模式控制的性能比較 69 第6章 結果與討論 73 6.1結果與討論 73 6.2未來研究方向 74 參考文獻 75

    [1] G. M. Huang, T. J. Tarn, and J. W. Clark, "On the controllability of quantum‐mechanical systems," Journal of Mathematical Physics, vol. 24, no. 11, pp. 2608-2618, 1983.
    [2] D. Dong and I. R. Petersen, "Quantum control theory and applications: a survey," IET control theory & applications, vol. 4, no. 12, pp. 2651-2671, 2010.
    [3] P. Vettori, "On the convergence of a feedback control strategy for multilevel quantum systems," in Proceedings of the MTNS Conference, 2002: Citeseer, pp. 1-6.
    [4] M. Mirrahimi, P. Rouchon, and G. Turinici, "Lyapunov control of bilinear Schrödinger equations," Automatica, vol. 41, no. 11, pp. 1987-1994, 2005.
    [5] S. Grivopoulos and B. Bamieh, "Lyapunov-based control of quantum systems," in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), 2003, vol. 1: IEEE, pp. 434-438.
    [6] S. Kuang and C. Shuang, "Population control of equilibrium states of quantum systems via Lyapunov method," Acta Automatica Sinica, vol. 36, no. 9, pp. 1257-1263, 2010.
    [7] S. Kuang and S. Cong, "Lyapunov control methods of closed quantum systems," Automatica, vol. 44, no. 1, pp. 98-108, 2008.
    [8] N. Yamamoto, K. Tsumura, and S. Hara, "Feedback control of quantum entanglement in a two-spin system," Automatica, vol. 43, no. 6, pp. 981-992, 2007.
    [9] S. Mancini and H. M. Wiseman, "Optimal control of entanglement via quantum feedback," Physical Review A, vol. 75, no. 1, p. 012330, 2007.
    [10] M. Yanagisawa, "Quantum feedback control for deterministic entangled photon generation," Physical review letters, vol. 97, no. 19, p. 190201, 2006.
    [11] N. Yamamoto, H. I. Nurdin, M. R. James, and I. R. Petersen, "Avoiding entanglement sudden death via measurement feedback control in a quantum network," Physical Review A, vol. 78, no. 4, p. 042339, 2008.
    [12] C. Hill and J. Ralph, "Weak measurement and control of entanglement generation," Physical Review A, vol. 77, no. 1, p. 014305, 2008.
    [13] D. Dong and I. R. Petersen, "Variable structure control of uncontrollable quantum systems," IFAC Proceedings Volumes, vol. 42, no. 6, pp. 237-242, 2009.
    [14] H. M. Wiseman and G. J. Milburn, "Quantum theory of optical feedback via homodyne detection," Physical Review Letters, vol. 70, no. 5, p. 548, 1993.
    [15] L. Viola and S. Lloyd, "Dynamical suppression of decoherence in two-state quantum systems," Physical Review A, vol. 58, no. 4, p. 2733, 1998.
    [16] N. Ganesan and T.-J. Tarn, "Decoherence control in open quantum systems via classical feedback," Physical Review A, vol. 75, no. 3, p. 032323, 2007.
    [17] D. Dong and I. R. Petersen, "Notes on sliding mode control of two-level quantum systems," Automatica, vol. 48, no. 12, pp. 3089-3097, 2012.
    [18] D. Dong and I. R. Petersen, "Sliding mode control of two-level quantum systems," Automatica, vol. 48, no. 5, pp. 725-735, 2012.
    [19] D. Dong and I. R. Petersen, "Sliding mode control of two-level quantum systems with bounded uncertainties," in Proceedings of the 2010 American Control Conference, 2010: IEEE, pp. 2446-2451.
    [20] C. Edwards and S. Spurgeon, Sliding mode control: theory and applications. Crc Press, 1998.
    [21] D. Dong and I. R. Petersen, "Sliding mode control of quantum systems," arXiv preprint arXiv:0911.0062, 2009.
    [22] D. D'alessandro and M. Dahleh, "Optimal control of two-level quantum systems," IEEE Transactions on Automatic Control, vol. 46, no. 6, pp. 866-876, 2001.
    [23] S. Grivopoulos and B. Bamieh, "Optimal population transfers in a quantum system for large transfer time," IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 980-992, 2008.
    [24] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and J. T. Stockburger, "Optimal control of open quantum systems: cooperative effects of driving and dissipation," Physical review letters, vol. 107, no. 13, p. 130404, 2011.
    [25] S.-C. Hou, M. Khan, X. Yi, D. Dong, and I. R. Petersen, "Optimal Lyapunov-based quantum control for quantum systems," Physical Review A, vol. 86, no. 2, p. 022321, 2012.
    [26] D. Dong, I. R. Petersen, and H. Rabitz, "Sampled-data design for robust control of a single qubit," IEEE Transactions on Automatic Control, vol. 58, no. 10, pp. 2654-2659, 2013.
    [27] S. Kuang, S. Cong, and Y. Lou, "Population control of quantum states based on invariant subsets under a diagonal lyapunov function," in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, 2009: IEEE, pp. 2486-2491.
    [28] 李昀晏, "利用基於糾纏測量的 Lyapunov 函數進行最大量子糾纏控制," 碩士論文, 國立成功大學航空太空工程學系, 2021.
    [29] R. V. Mendes and V. Man’ko, "Quantum control and the Strocchi map," Physical Review A, vol. 67, no. 5, p. 053404, 2003.
    [30] N. J. Cerf and C. Adami, "Information theory of quantum entanglement and measurement," Physica D: Nonlinear Phenomena, vol. 120, no. 1-2, pp. 62-81, 1998.
    [31] M. A. Nielsen, "Conditions for a class of entanglement transformations," Physical Review Letters, vol. 83, no. 2, p. 436, 1999.
    [32] M. A. Nielsen and I. Chuang, "Quantum computation and quantum information," ed: American Association of Physics Teachers, 2002.
    [33] Y.-Y. Lee and C.-D. Yang, "Generation of Maximally Entangled States by Lyapunov Control Based on Entanglement Measure," arXiv preprint arXiv:2203.00182, 2022.
    [34] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement," Reviews of modern physics, vol. 81, no. 2, p. 865, 2009.
    [35] W. K. Wootters, "Entanglement of formation of an arbitrary state of two qubits," Physical Review Letters, vol. 80, no. 10, p. 2245, 1998.
    [36] G. Vidal, "Entanglement monotones," Journal of Modern Optics, vol. 47, no. 2-3, pp. 355-376, 2000.
    [37] 楊憲東, "非線性系統與控制. I, 系統分析," ed: 成大出版社, 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE