| 研究生: |
林德華 Lin, Der-Hwa |
|---|---|
| 論文名稱: |
磁控反應濺鍍製備Ta3N5奈米柱陣列及其光催化和光電化學之應用 Magnetron Reactive Sputtering Fabrication of Ta3N5 Nanocolumns For the Photocatalytic and Photoelectrochemical Applications |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 氮化鉭 、奈米柱 、反應性濺鍍法 、光催化 |
| 外文關鍵詞: | Ta3N5 nanocolumn arrays, photocatalysis, reactive sputtering |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ta3N5具有能吸收可見光波段到600nm以及其他的優良特性,這些使得此材料適合當作光催化劑。然而,以反應濺鍍製備的方式少有研究使用,而且常需要腐蝕性的NH3輔助。
TaxNy屬於多化學劑量比的氮化物,隨著不同的參數調控製成,已反應濺鍍方式製備含N量高的Ta3N5又是一大挑戰。在此研究中,我們試著不使用具侵蝕性的NH3的方式直接濺鍍成長奈米柱於FTO基板上,並且不需要輔以旋轉基板或小角度濺鍍方式,因此可以在製程中避免更多不必要產生的問題。這樣的策略可以提供一個取代方式有效的成長氮化物。
Ta3N5奈米柱藉由調整Ar/N2的比例及工作壓力成長,並且以XRD, SEM, AES, XPS, TEM, 和UV-Vis來分析其性質
綜合SEM, XRD, AES, 和 XPS的結果,我們成功合成具有奈米柱狀結構的Ta3N5,所使用的參數為Ar : N2 = 7 : 15, 工作壓力30 mTorr, DC 450W, 600 ℃。
利用光降解甲基藍來測定其光催化性質,在pH = 10的環境下藉由可見光照射,50%的甲基藍(5ppm, 10ml)可以在150分鐘內被分解,光催化反應速率常數為0.0059 min-1,約P25的2.7倍。另外,藉由循環測試,可以知道其穩定性。
Ta3N5 (band gap approximate 2.1 eV) can effectively absorb the visible light up to 600 nm and other various superior properties, which make it promising for photocatalysis. However, reactive sputtering was not heavily used to make Ta3N5, and a caustic NH3 treatment is often required.
TaxNy indicates a broad space of phases, depending upon the fabrication conditions. Making N-rich Ta3N5 using reactive sputtering is full of challenges. In this research, reactive sputtering was used to directly grow Ta3N5 nanocolumn arrays on an FTO/glass substrate, without using caustic NH3 gases. In addition, no other treatments were adopted, such as a seeding layer, substrate rotation, or a glancing angle strategy, thus preventing unnecessary complexity from being incorporated into an existing sputtering system. This strategy provides an alternative approach to effectively fabricate nitrides.
Ta3N5 nanocolumn arrays were obtained by tuning the parameters of the Ar/N2 ratio, and the working pressures. Various characterization tools such as XRD, SEM, AES, XPS, TEM, and UV-Vis were used to study the related properties.
Combining the results of SEM, XRD, AES, and XPS analyses, we successfully made the columnar structures of single Ta3N5 phase, which was made under the conditions of the flow rates of Ar : N2 = 7 : 15, working pressure of 30 mTorr, DC 450W, and 600 ℃).
The photodegradation performance was measured in an environment with a pH of approximately 10, in which approximately 50 % of methylene blue (5 ppm, 10ml) was photodegraded in 150 min under 300 W visible light after dark absorption. The photodegradation rate constant k was 0.0059 min-1, which was approximately 2.7 times higher than that of P25. Its stability was also evaluated by a three cycle test.
1. J. Widén, N. Carpman, V. Castellucci, D. Lingfors, J. Olauson, F. Remouit, M. Bergkvist, M. Grabbe, and R. Waters, "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources", Renewable and Sustainable Energy Reviews 44, 356-375 (2015).
2. Z. Xiong, M. Zheng, C. Zhu, B. Zhang, L. Ma, and W. Shen, "One-step synthesis of highly efficient three-dimensional Cd1-xZnxS photocatalysts for visible light photocatalytic water splitting", Nanoscale Research Letters 8, 1-6 (2013).
3. http://eetd.lbl.gov/newsletter/nl19/eetd-nl19-1-cool.html.
4. T. Hisatomi, J. Kubota, and K. Domen, "Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting", Chemical Society Reviews 43, 7520-7535 (2014).
5. J. M. Herrmann, "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants", Catalysis Today 53, 115-129 (1999).
6. A. Fujishima, "Electrochemical photolysis of water at a semiconductor electrode", Nature 238, 37-38 (1972).
7. H. D. Müller, and F. Steinbach, "Decomposition of isopropyl alcohol photosensitized by zinc oxide", Journal of Catalyst 3, 171-178 (1970).
8. A. Mills, and S. Le Hunte, "An overview of semiconductor photocatalysis", Journal of Photochemistry and Photobiology A: Chemistry 108, 1-35 (1997).
9. W. Choi, "Pure and modified TiO2 photocatalysts and their environmental applications", Catalysis Surveys from Asia 10, 16-28 (2006).
10. R. Ahmed, G. Will, J. Bell, and H. Wang, "Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method", Journal of Nanoparticle Research 14, 1-13 (2012).
11. F. áAndrew Frame, "First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light", Chemical Communications 2206-2208 (2008).
12. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, and H. Fu, "Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation", Chemical Communications 48, 2858-2860 (2012).
13. J. Kondo, "Cu2O as a photocatalyst for overall water splitting under visible light irradiation", Chemical Communications 357-358 (1998).
14. N. Kostova, A. Eliyas, M. Fabián, M. Achimovičová, and P. Baláž, "Photocatalytic properties of mechanochemically synthesized nanocrystalline ZnAl2O4 and CdSe", Acta Physica Polonica A 126, 967-970 (2014).
15. H. Zhang, and Y. Zhu, "Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization", The Journal of Physical Chemistry C 114, 5822-5826 (2010).
16. A. Hamza, J. Fatuase, S. Waziri, and O. Ajayi, "Solar photocatalytic degradation of phenol using nanosized ZnO and α-Fe2O3", Journal of Chemical Engineering and Materials Science 4, 87-92 (2013).
17. C. Yang, P. D. Tran, P. P. Boix, P. S. Bassi, N. Yantara, L. H. Wong, and J. Barber, "Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water", Nanoscale 6, 6506-6510 (2014).
18. J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, and S. Sajjad, "Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides", Energy & Environmental Science 3, 715-726 (2010).
19. J. Ouyang, M. Chang, and X. Li, "CdS-sensitized ZnO nanorod arrays coated with TiO2 layer for visible light photoelectrocatalysis", Journal of Materials Science 47, 4187-4193 (2012).
20. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini, and E. Giamello, "N-doped TiO2: theory and experiment", Chemical Physics 339, 44-56 (2007).
21. D. Robert, "Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications", Catalysis Today 122, 20-26 (2007).
22. P. Westerhoff, G. Song, K. Hristovski, and M. A. Kiser, "Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials", Journal of Environmental Monitoring 13, 1195-1203 (2011).
23. O. Carp, C. L. Huisman, and A. Reller, "Photoinduced reactivity of titanium dioxide", Progress in Solid State Chemistry 32, 33-177 (2004).
24. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science 293, 269-271 (2001).
25. S. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, and R. M. Lambert, "Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts", Journal of the American Chemical Society 129, 13790-13791 (2007).
26. V. Subramanian, E. Wolf, and P. V. Kamat, "Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?", The Journal of Physical Chemistry B 105, 11439-11446 (2001).
27. Q. Li, T. Kako, and J. Ye, "WO3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation", Chemical Communications 46, 5352-5354 (2010).
28. J. Feng, J. Han, and X. Zhao, "Synthesis of CuInS2 quantum dots on TiO2 porous films by solvothermal method for absorption layer of solar cells", Progress in Organic Coatings 64, 268-273 (2009).
29. R. S. Dibbell, D. G. Youker, and D. F. Watson, "Excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges", The Journal of Physical Chemistry C 113, 18643-18651 (2009).
30. T. Nakahira, Y. Inoue, K. Iwasaki, H. Tanigawa, Y. Kouda, S. Iwabuchi, K. Kojima, and M. Grätzel, "Visible light sensitization of platinized TiO2 photocatalyst by surface‐coated polymers derivatized with ruthenium tris (bipyridyl)", Rapid Communications 9, 13-17 (1988).
31. R. Daghrir, P. Drogui, and D. Robert, "Modified TiO2 for environmental photocatalytic applications: a review", Industrial & Engineering Chemistry Research 52, 3581-3599 (2013).
32. C. Burda, Y. Lou, X. Chen, A. C. Samia, J. Stout, and J. L. Gole, "Enhanced nitrogen doping in TiO2 nanoparticles", Nano letters 3, 1049-1051 (2003).
33. W. Zhao, W. Ma, C. Chen, J. Zhao, and Z. Shuai, "Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation", Journal of the American Chemical Society 126, 4782-4783 (2004).
34. D. Chen, D. Yang, Q. Wang, and Z. Jiang, "Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles", Industrial & Engineering Chemistry Research 45, 4110-4116 (2006).
35. S. U. Khan, M. Al-Shahry, and W. B. Ingler, "Efficient photochemical water splitting by a chemically modified n-TiO2", Science 297, 2243-2245 (2002).
36. M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, and P. Yang, "Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation", Materials Letters 60, 693-697 (2006).
37. Y. Choi, T. Umebayashi, and M. Yoshikawa, "Fabrication and characterization of C-doped anatase TiO2 photocatalysts", Journal of Materials Science 39, 1837-1839 (2004).
38. R. Hahn, A. Ghicov, J. Salonen, V. P. Lehto, and P. Schmuki, "Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment", Nanotechnology 18, 105604 (2007).
39. C. Ying, D. Hao, and W. Lishi, "Doped-TiO2 photocatalysts and synthesis methods to prepare TiO2 films", Journal of Materials Science & Technology 24, 675-689 (2008).
40. X. Li, P. Liu, Y. Mao, M. Xing, and J. Zhang, "Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis", Applied Catalysis B: Environmental 164, 352-359 (2015).
41. W. Choi, A. Termin, and M. R. Hoffmann, "The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics", The Journal of Physical Chemistry 98, 13669-13679 (1994).
42. M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production", Renewable and Sustainable Energy Reviews 11, 401-425 (2007).
43. B. Jin, X. Zhou, X. Xu, L. Ma, Z. Wu, and Y. Huang, "C@ Ag/TiO2: A Highly Efficient and Stable Photocatalyst Active under Visible Light", World Journal of Nano Science and Engineering 3, 1-5 (2013).
44. C. Zhang, and H. He, "A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature", Catalysis Today 126, 345-350 (2007).
45. G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. J. Tilley, and A. M. Venezia, "Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime", The Journal of Physical Chemistry B 105, 1033-1040 (2001).
46. M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, and C. Lin, "p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities", Energy & Environmental Science 6, 1211-1220 (2013).
47. Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, and J. Weber, "UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension", Journal of Photochemistry and Photobiology A: Chemistry 183, 218-224 (2006).
48. A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, and K. Domen, "Electrochemical behavior of thin Ta3N5 semiconductor film", The Journal of Physical Chemistry B 108, 11049-11053 (2004).
49. S. Banerjee, S. K. Mohapatra, and M. Misra, "Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water", Chemical Communications, 7137-7139 (2009).
50. G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, "An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤ 500 nm)", Chemical Communications, 1698-1699 (2002).
51. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, and K. Domen, "TaON and Ta3N5 as new visible light driven photocatalysts", Catalysis Today 78, 555-560 (2003).
52. S. Li, L. Zhang, H. Wang, Z. Chen, J. Hu, K. Xu, and J. Liu, "Ta3N5-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts", Scientific reports 4, 1-8 (2014).
53. D. K. Kim, H. Lee, D. Kim, and Y. K. Kim, "Electrical and mechanical properties of tantalum nitride thin films deposited by reactive sputtering", Journal of Crystal Growth 283, 404-408 (2005).
54. Y. J. Peng, S. Y. Lee, and K. S. Chang, "Facile Fabrication of a photocatalyst of Ta4N5 nanocolumn arrays by using reactive sputtering", Journal of The Electrochemical Society 162, H371-H375 (2015).
55. T. Murase, H. Irie, and K. Hashimoto, "Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders", The Journal of Physical Chemistry B 108, 15803-15807 (2004).
56. W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, and K. Domen, "Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods", The Journal of Physical Chemistry B 107, 1798-1803 (2003).
57. M. Higashi, K. Domen, and R. Abe, "Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation", Energy & Environmental Science 4, 4138-4147 (2011).
58. S. J. Henderson, and A. L. Hector, "Structural and compositional variations in Ta3N5 produced by high-temperature ammonolysis of tantalum oxide", Journal of Solid State Chemistry 179, 3518-3524 (2006).
59. Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, "Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook", Energy & Environmental Science 6, 347-370 (2013).
60. A. Dabirian, H. van’t Spijker, and R. van de Krol, "Wet ammonia synthesis of semiconducting N: Ta2O5, Ta3N5 and β-TaON films for photoanode applications", Energy Procedia 22, 15-22 (2012).
61. M. Li, W. Luo, D. Cao, X. Zhao, Z. Li, T. Yu, and Z. Zou, "A Co‐catalyst‐loaded Ta3N5 photoanode with a high solar photocurrent for water splitting upon facile removal of the surface layer", Angewandte Chemie International Edition 52, 11016-11020 (2013).
62. J. Hou, C. Yang, H. Cheng, S. Jiao, O. Takeda, and H. Zhu, "High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting", Energy & Environmental Science 7, 3758-3768 (2014).
63. M. Higashi, K. Domen, and R. Abe, "Highly Stable Water Splitting on Oxynitride TaON Photoanode System under Visible Light Irradiation", Journal of the American Chemical Society 134, 6968-6971 (2012).
64. P. Violet, E. Blanquet, and O. Le Bacq, "Density functional study of the stability and electronic properties of TaxNy compounds used as copper diffusion barriers", Microelectronic engineering 83, 2077-2081 (2006).
65. X. Wu, Y. Tao, L. Li, Y. Bando, and D. Golberg, "Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties", Nanotechnology 24, 175701 (2013).
66. M. Ohashi, and T. Sugiyama, "Synthesis of tantalum (V)-based nitride and oxynitrides on aluminum nitride particles and its application to over glaze color", Journal of the Ceramic Society of Japan 121, 397-400 (2013).
67. M. Tabata, K. Maeda, M. Higashi, D. Lu, T. Takata, R. Abe, and K. Domen, "Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light", Langmuir 26, 9161-9165 (2010).
68. X. Feng, T. J. LaTempa, J. I. Basham, G. K. Mor, O. K. Varghese, and C. A. Grimes, "Ta3N5 nanotube arrays for visible light water photoelectrolysis", Nano letters 10, 948-952 (2010).
69. Q. Zhang, and L. Gao, "Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation", Langmuir 20, 9821-9827 (2004).
70. Y. Wang, W. Ma, C. Chen, X. Hu, J. Zhao, and C. Y. Jimmy, "Fe3+/Fe2+ cycling promoted by Ta3N5 under visible irradiation in Fenton degradation of organic pollutants", Applied Catalysis B: Environmental 75, 256-263 (2007).
71. Z. Wang, J. Hou, S. Jiao, K. Huang, and H. Zhu, "In situ chemical reduction of the Ta3N5 quantum dots coupled TaON hollow spheres heterojunction photocatalyst for water oxidation", Journal of Materials Chemistry 22, 21972-21978 (2012).
72. J. C. Park, J. H. Pee, Y. J. Kim, and W. S. Cho. "Effect of silica coating on the thermal stability of tantalum based nitrides pigments", Key Engineering Materials 434-435, 134-137 (2010).
73. C. Stampfl, and A. Freeman, "Metallic to insulating nature of TaNx: role of Ta and N vacancies", Physical Review B 67, 064108 (2003).
74. A. Salamat, A. L. Hector, P. Kroll, and P. F. McMillan, "Nitrogen-rich transition metal nitrides", Coordination Chemistry Reviews 257, 2063-2072 (2013).
75. C. M. Fang, E. Orhan, G. De Wijs, H. Hintzen, R. de Groot, R. Marchand, and J. Y. Saillard, "The electronic structure of tantalum (oxy) nitrides TaON and Ta3N5", Journal of Materials Chemistry 11, 1248-1252 (2001).
76. Y. Luo, X. Liu, X. Tang, Y. Luo, Q. Zeng, X. Deng, S. Ding, and Y. Sun, "Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution", Journal of Materials Chemistry A 2, 14927-14939 (2014).
77. J. Swisher, and M. Read, "Thermodynamic properties and electrical conductivity of Ta3N5 and TaON", Metallurgical Transactions 3, 493-498 (1972).
78. H. X. Dang, N. T. Hahn, H. S. Park, A. J. Bard, and C. B. Mullins, "Nanostructured Ta3N5 films as visible-light active photoanodes for water oxidation", The Journal of Physical Chemistry C 116, 19225-19232 (2012).
79. L. Hiltunen, M. Leskelä, M. Mäkelä, L. Niinistö, E. Nykänen, and P. Soininen, "Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method", Thin Solid Films 166, 149-154 (1988).
80. R. Fix, R. G. Gordon, and D. M. Hoffman, "Chemical vapor deposition of vanadium, niobium, and tantalum nitride thin films", Chemistry of Materials 5, 614-619 (1993).
81. M. Ritala, P. Kalsi, D. Riihelä, K. Kukli, M. Leskelä, and J. Jokinen, "Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition", Chemistry of Materials 11, 1712-1718 (1999).
82. R. Marchand, F. Tessier, and F. J. DiSalvo, "New routes to transition metal nitrides: and characterization of new phases", Journal of Materials Chemistry 9, 297-304 (1999).
83. X. Chen, J. Dye, H. Eick, S. Elder, and K. L. Tsai, "Synthesis of transition-metal nitrides from nanoscale metal particles prepared by homogeneous reduction of metal halides with an alkalide", Chemistry of Materials 9, 1172-1176 (1997).
84. I. P. Parkin, and A. T. Rowley, "Solid‐state routes to tantalum nitrides (TaN, Ta3N5)", Advanced Materials 6, 780-782 (1994).
85. B. Mazumder, and A. L. Hector, "Use of low temperature solvothermal reactions in the synthesis of nanocrystalline tantalum nitrides including nanorods", Journal of Materials Chemistry 18, 1392-1398 (2008).
86. B. Mazumder, P. Chirico, and A. L. Hector, "Direct solvothermal synthesis of early transition metal nitrides", Inorganic Chemistry 47, 9684-9690 (2008).
87. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices", Journal of Applied Physics 98, 041301 (2005).
88. T. K. Townsend, E. M. Sabio, N. D. Browning, and F. E. Osterloh, "Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling", Energy & Environmental Science 4, 4270-4275 (2011).
89. K. Maeda, N. Nishimura, and K. Domen, "A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light", Applied Catalysis A: General 370, 88-92 (2009).
90. L. Yuliati, J. H. Yang, X. Wang, K. Maeda, T. Takata, M. Antonietti, and K. Domen, "Highly active tantalum (v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation", Journal of Materials Chemistry 20, 4295-4298 (2010).
91. D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota, and K. Domen, "Ta3N5 photoanodes for water splitting prepared by sputtering", Thin Solid Films 519, 2087-2092 (2011).
92. S. Kim, and B. Cha, "Deposition of tantalum nitride thin films by DC magnetron sputtering", Thin Solid Films 475, 202-207 (2005).
93. J. Wang, L. Chen, Z. Lu, C. Hsiung, W. Hsieh, and T. Yew, "Ta and Ta-N diffusion barriers sputtered with various N2/Ar ratios for Cu metallization", Journal of Vacuum Science & Technology B 20, 1522-1526 (2002).
94. M. Kerlau, O. Merdrignac-Conanec, M. Guilloux-Viry, and A. Perrin, "Synthesis of crystallized TaON and Ta3N5 by nitridation of Ta2O5 thin films grown by pulsed laser deposition", Solid state sciences 6, 101-107 (2004).
95. S. M. Na, I. S. Park, S. Y. Park, G. H. Jeong, and S. J. Suh, "Electrical and structural properties of Ta–N thin film and Ta/Ta–N multilayer for embedded resistor", Thin Solid Films 516, 5465-5469 (2008).
96. M. Liao, J. Feng, W. Luo, Z. Wang, J. Zhang, Z. Li, T. Yu, and Z. Zou, "Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode", Advanced Functional Materials 22, 3066-3074 (2012).
97. J. Cao, L. Ren, N. Li, C. Hu, and M. Cao, "Mesoporous Ta3N5 microspheres prepared from a high‐surface‐area, microporous, amorphous precursor and their visible‐light‐driven photocatalytic activity", Chemistry-A European Journal 19, 12619-12623 (2013).
98. Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, and K. Domen, "Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting", Advanced Materials 25, 125-131 (2013).
99. T. Hisatomi, M. Otani, K. Nakajima, K. Teramura, Y. Kako, D. Lu, T. Takata, J. N. Kondo, and K. Domen, "Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate", Chemistry of Materials 22, 3854-3861 (2010).
100. B. Burton, A. Lavoie, and S. George, "Tantalum nitride atomic layer deposition using (tert-Butylimido) tris (diethylamido) tantalum and hydrazine", Journal of the Electrochemical Society 155, 508-516 (2008).
101. Y. Cong, H. S. Park, S. Wang, H. X. Dang, F. -R. F. Fan, C. B. Mullins, and A. J. Bard, "Synthesis of Ta3N5 nanotube arrays modified with electrocatalysts for photoelectrochemical water oxidation", The Journal of Physical Chemistry C 116, 14541-14550 (2012).
102. G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han, and C. Li, "A tantalum nitride photoanode modified with a hole‐storage layer for highly stable solar water splitting", Angewandte Chemie 126, 7423-7427 (2014).
103. Z. Su, L. Wang, S. Grigorescu, K. Lee, and P. Schmuki, "Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting", Chemical Communications 50, 15561-15564 (2014).
104. Y. Kado, C. Y. Lee, K. Lee, J. Müller, M. Moll, E. Spiecker, and P. Schmuki, "Enhanced water splitting activity of M-doped Ta3N5 (M= Na, K, Rb, Cs)", Chemical Communications 48, 8685-8687 (2012).
105. J. Wang, T. Fang, L. Zhang, J. Feng, Z. Li, and Z. Zou, "Effects of oxygen doping on optical band gap and band edge positions of Ta3N5 photocatalyst: A GGA+ U calculation", Journal of Catalysis 309, 291-299 (2014).
106. Y. Kado, R. Hahn, C. Y. Lee, and P. Schmuki, "Strongly enhanced photocurrent response for Na doped Ta3N5 nanoporous structure", Electrochemistry Communications 17, 67-70 (2012).
107. S. Grigorescu, B. Bärhausen, L. Wang, A. Mazare, J. E. Yoo, R. Hahn, and P. Schmuki, "Tungsten doping of Ta3N5-nanotubes for band gap narrowing and enhanced photoelectrochemical water splitting efficiency", Electrochemistry Communications 51, 85-88 (2015).
108. E. Y. Park, J. H. Pee, Y. J. Kim, and W. S. Cho. "Effects of doping elements on residual oxygen/nitrogen contents in red pigment of tantalum nitrides (Ta3N5), Materials Science Forum 654-656, 2386-2389 (2010).
109. S. S. K. Ma, T. Hisatomi, K. Maeda, Y. Moriya, and K. Domen, "Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts", Journal of the American Chemical Society 134, 19993-19996 (2012).
110. C. Zhen, L. Wang, G. Liu, G. Q. M. Lu, and H. M. Cheng, "Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting", Chemical Communications 49, 3019-3021 (2013).
111. J. Hou, Z. Wang, C. Yang, H. Cheng, S. Jiao, and H. Zhu, "Cobalt-bilayer catalyst decorated Ta3N5 nanorod arrays as integrated electrodes for photoelectrochemical water oxidation", Energy & Environmental Science 6, 3322-3330 (2013).
112. Z. Su, S. Grigorescu, L. Wang, K. Lee, and P. Schmuki, "Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting", Electrochemistry Communications 50, 15-19 (2015).
113. E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, and K. Kostov, "XPS study of N2 annealing effect on thermal Ta2O5 layers on Si", Applied Surface Science 225, 86-99 (2004).
114. E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, and K. Kostov, "N2 Annealing Effect on Thermal Ta2O5 Layers on Si Studied by XPS", Surface Science Spectra 11, 1-25 (2004).
115. L. Li, G. Lv, and S. Z. Yang, "Effects of nitrogen partial pressure in Ta–N films grown by the cathodic vacuum arc technique", Journal of Physics D: Applied Physics 46, 285202 (2013).
116. A. Piscopo, D. Robert, and J. V. Weber, "Influence of pH and chloride anion on the photocatalytic degradation of organic compounds: Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution", Applied Catalysis B: Environmental 35, 117-124 (2001).