簡易檢索 / 詳目顯示

研究生: 謝雅婷
Hsieh, Ya-Ting
論文名稱: 生物可分解類高分子、共聚物、摻合體之微觀尺度晶板排列顯微及X射線分析
Microscopic and Microbeam X-ray Studies on Lamellar Assembly in Biodegradable Polymers, Copolymers, and Blends
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 78
中文關鍵詞: 聚羥基丁酸酯共聚羥基戊酸酯環帶狀球晶物理性蝕刻聚己二酸二乙酯聚己二酸二丁酯聚己二酸二己酯聚己内酯
外文關鍵詞: poly(3-hydroxybutyrate-co-3-hydroxyvalerate), ring-banded spherulite, physical etching, poly(ethylene adipate), poly(1,4-butylene adipate), poly(1,6-hexamethylene adipate), poly(epsilon-caprolactone)
相關次數: 點閱:90下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係透過微觀尺度的顯微及X 射線微束技術,針對生物可分解類高分子、共聚高分子或摻合體之球晶形貌進行探討。利用具有雙環帶球晶的生物可分解類聚羥基丁酸酯共聚羥基戊酸酯 [poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV] 與 30 wt% 的不定形高分子聚醋酸乙烯 [poly(vinyl acetate),PVAc] 進行混摻後,以偏光顯微鏡 (polarized light optical microscope,POM)、掃描式電子顯微鏡 ( scanning electron microscope,SEM)、原子力顯微鏡 (atomic force microscope,AFM) 及X 射線微束繞射技術 (micro-beam X-ray diffraction) 進行觀察。研究中將 PHBV/PVAc 70/30 組成的環帶狀球晶沿線性方向以每 5 μm 為一個間距進行X 射線微束繞射分析。另外,研究中亦透過斷裂及溶劑進行選擇性蝕刻,幫助研究摻合體球晶內部之晶板排列狀況。三維空間的 PHBV 環帶狀球晶其內部細緻的晶板排列方向,在此研究中進行揭露。由 SEM 及 X 射線微束繞射結果顯示,PHBV 的晶板排列沿球晶成長方向逐漸朝右手手性方向進行偏轉。因 PVAc 摻入而引發之 PHBV 環帶間距及其環帶規則度上的差異,在此研究中亦進行討論。後續利用聚己二酸二乙酯 [poly(ethylene adipate),PEA]、聚己二酸二丁酯 [poly(1,4-butylene adipate),PBA]、聚己二酸二己酯 [poly(1,6-hexamethylene adipate),PHA] 及聚己内酯 [poly(epsilon-caprolactone),PCL] 等聚酯類高分子,透過 POM 及 AFM 觀察其薄膜狀態在不同特性的玻璃基板上之球晶形貌。利用旋轉塗佈技術將聚酯類高分子薄膜製備於未改質及兩種聚甲基丙烯酸酯類高分子 [聚甲基丙烯酸苄酯 poly(benzyl methacrylate),PBzMA 及聚甲基丙烯酸甲酯 poly(methyl methacrylate),PMMA] 接支的玻璃基板表面。研究發現,在改質的基板上進行熔融結晶的 PEA、PBA 及 PHA 薄膜所生成的球晶形貌與在未改質基板上生成的球晶形貌相同。然而,在 PCL 系統則發現兩種新的球晶形貌 (一種為混合有負型雙折射及不具雙折射特性的球晶形貌,另一種為具正型雙折射特性且外形似水芙蓉的球晶形貌)。由 AFM 的研究結果發現,具負型雙折射特性的 PCL 晶體是由晶板以 edge-on 方式堆疊而成,而正型雙折射特性及不具雙折射特性的 PCL 晶體則是由晶板以略微傾斜的 flat-on 方式 (朝球晶成長方向前傾或後傾) 堆疊而成。此外,PCL 在 PCL/PBzMA 及 PCL/PMMA 摻合體中的熔融及結晶表現,也在本研究中透過微差掃描熱卡計 (differential scanning calorimetry,DSC) 進行觀察,由研究結果可進一步推斷,PCL 在聚甲基丙烯酸酯類高分子接支的玻璃基板表面之結晶度仍可維持在 50% 左右。

    This study has been focused on the spherulitic morphology of biodegradable polyesters, copolymer, and blends by using microscopic and microbeam X-ray techniques. Double ring-banded spherulites of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV with 12 wt% 3HV) blending with 30 wt% amorphous poly(vinyl acetate) (PVAc) were examined using polarized light optical microscopy (POM), scanning electron microscopy (SEM), atomic-force microscopy (AFM), and micro-beam X-ray diffraction. A ring-banded spherulite of PHBV/PVAc 70/30 blend was linearly scanned across the bands in 5 μm steps by means of microbeam X-ray diffraction. Solvent-etching and fracturing were utilized for probing the interior lamellar textures of the blend samples. Detail interior lamellar orientations in bulk film of PHBV three-dimensional ring-banded spherulites were revealed. SEM and micro-beam X-ray diffraction results suggest that the PHBV lamellar orientation gradually change along the radial growth direction with right-handed rotation sense. The blending effect in band pattern (width and regularity) of PHBV/PVAc blend was also discussed. Subsequently, the spherulitic morphology of poly(ethylene adipate) (PEA), poly(1,4-butylene adipate) (PBA), poly(1,6-hexamethylene adipate) (PHA), and poly(epsilon-caprolactone) (PCL) thin films on different glass substrates were investigated by using POM and AFM. Polyester films were prepared by spin coating technique onto unmodified and two types of polymethacrylate (poly(benzyl methacrylate), PBzMA and poly(methyl methacrylate), PMMA) grafted glass slides. Melt-crystallized PEA, PBA, and PHA thin films on modified substrates exhibited the same spherulitic morphologies with their film samples on unmodified glass slides. However, two types of newfound spherulitic morphologies (negative- and non-birefringence mixed pattern and positive-type water lettuce-like pattern) were observed in PCL film samples. AFM observation shows that the negative-type birefringence crystals of PCL are composed of edge-on lamellae and the positive-type or non-birefringence crystals are composed of tilted flat-on lamellae (forward or backward along their radial direction). Furthermore, the melting and crystallization behaviors of PCL in PCL/PBzMA and PCL/PMMA blends have investigated in this study by using differential scanning calorimetry (DSC). DSC results suggest that the crystallinity of PCL on polymethacrylate grafted glass slides can be maintained at nearly 50% still.

    ABSTRACT (IN CHINESE) / I ABSTRACT (IN ENGLISH) / II ACKNOWLEDGEMENT (IN CHINESE) / III CONTENTS / IV LIST OF TABLES / VI LIST OF FIGURES / VII NOMENCLATURE / XI CHAPTER 1 General Introduction / 1 1.1 Biodegradable Polymers / 1 1.2 Spherulitic Morphology of Biodegradable Polyesters / 2 1.3 Research Objectives / 7 1.4 References / 8 CHAPTER 2 Theoretical Background / 11 2.1 Polarized Light Microscopy / 11 2.2 Methods of Polymer Brush Preparation / 13 2.3 Surface Tension and Interfacial Tension / 14 2.4 References / 15 CHAPTER 3 Microscopy and Microbeam X-ray Analyses in Poly(3-hydroxubtyrate-co-3-hydroxyvalerate) with Amorphous Poly(vinyl acetate) / 16 3.1 Introduction / 16 3.2 Experimental Section / 18 3.2.1 Materials / 18 3.2.2 Sample preparation / 19 3.2.3 Etching procedures / 19 3.2.4 Apparatus / 20 3.3 Results and Discussion / 21 3.3.1 Lamellar orientation in the PHBV/PVAc ring-banded spherulite / 21 3.3.2 Top surface and interior structures of the PHBV/PVAc ring-banded spherulite / 22 3.3.3 The effect of PVAc in the PHBV ring-banded spherulite / 32 3.4 Summary / 34 3.5 References / 35 CHAPTER 4 Morphology and Lamellar Orientation of Melt-crystallized Polyesters on End-grafted Polymethacrylate-brush Substrates / 39 4.1 Introduction / 39 4.2 Experimental Section / 41 4.2.1 Materials / 41 4.2.2 Preparation of PBzMA- or PMMA-g-glass substrates / 43 4.2.3 Sample preparation and procedures / 45 4.2.4 Apparatus / 46 4.3 Results and Discussion / 47 4.3.1 Characterization of PBzMA- and PMMA-g-glass substrate / 47 4.3.2 Evaluation of polymer-g-glass substrate reusability / 51 4.3.3 Spherulitic morphology and lamellar assembly of melt-crystallized polyesters on various substrates / 53 4.3.4 Melting and crystallization behaviors of PCL in PCL/PBzMA and PCL/PMMA blends / 64 4.4 Summary / 66 4.5 References / 67 CHAPTER 5 Conclusions / 72 APPENDIX / 73

    Chapter 1
    [1] Avérous, L. & Pollet, E. Environmental silicate nano-biocomposites. Avérous, L. & Pollet, E. (Eds.), Springer-Verlag, London, United Kingdom, VI, 13-39 (2012).
    [2] Sisson, A. L., Schroeter, M. & Lendlein, A. Handbook of biodegradable polymers. Lendlein, A. & Sisson, A. L. (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1-12 (2011).
    [3] Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762-798 (2007).
    [4] Tian, H., Tang, Z., Zhuang, X., Chen, X. & Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37, 237-280 (2012).
    [5] Pitt, G. G., Gratzl, M. M., Kimmel, G. L., Surles, J. & Sohindler, A. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 2, 215-220 (1981).
    [6] Eldsäter, C., Albertsson, A. C. & Karlsson, S. Impact of degradation mechanisms on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) during composting. Acta Polym. 48, 478-483 (1997).
    [7] Hou, Y., Chen, J., Sun, P., Gan, Z. & Zhang, G. In situ investigations on enzymatic degradation of poly(ɛ-caprolactone). Polymer 48, 6348-6353 (2007).
    [8] Cho, K., Lee, J. & Kwon, K. Hydrolytic degradation behavior of poly(butylene succinate)s with different crystalline morphologies. J. Appl. Polym. Sci. 79, 1025-1033 (2001).
    [9] Lee, W. K., Lee, J. K. & Ha, C. S. Growth of monolayered poly(L-lactide) lamellar crystals on a substrate. Macromol. Res. 11, 511-513 (2003).
    [10] Chou, Y. H. Lamellar assembly in ring-banded spherulitic morphology of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) interacting with amorphous poly(vinyl acetate). MS Thesis, National Cheng Kung University, Taiwan (2010).
    [11] Chang, L., Chou, Y. H. & Woo, E. M. Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Colloid Polym. Sci. 289, 199-211 (2011).
    [12] Ye, H. M., Wang J. S., Tang, S., Xu, J., Feng, X. Q., Guo, B. H., Xie, X. M., Zhou, J. J., Li, L., Wu, Q. & Chen, G. Q. Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules 43, 5762-5770 (2010).
    [13] Jiang, Y., Zhou, J. J., Li, L., Xu, J., Guo, B. H., Zhang, Z. M., Wu, Q., Chen, G. Q., Weng, L. T., Cheung, Z. L. & Chan, C. M. Surface properties of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) banded spherulites studied by atomic force microscopy and time-of-flight secondary ion mass spectrometry. Langmuir 19, 7417-7422 (2003).
    [14] Lugito, G. Polymorphism, lamellae, and spherulites in blends of poly(1,4-butylene adipate), poly(ethylene adipate), and amorphous polymers. MS Thesis, National Cheng Kung University, Taiwan (2012).
    [15] Lugito, G. & Woo, E. Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy. Colloid Polym. Sci. 291, 817-826 (2013).
    [16] Woo, E. M., Wu, P. L., Wu, M. C. & Yan, K. C. Thermal behavior of ring-band versus Maltese-cross spherulites: Case of monomorphic poly(ethylene adipate). Macromol. Chem. Phys. 207, 2232-2243 (2006).
    [17] Wang, T., Wang, H., Li, H., Gan, Z. & Yan, S. Banded spherulitic structures of poly(ethylene adipate), poly(butylene succinate) and in their blends. Phys. Chem. Chem. Phys. 11, 1619-1627 (2009).
    [18] Meyer, A., Yen, K. C., Li, S.-H., Förster, S. & Woo, E. M. Atomic-force and optical microscopy investigations on thin-film morphology of spherulites in melt-crystallized poly(ethylene adipate). Ind. Eng. Chem. Res. 49, 12084-12092 (2010).
    [19] Woo, E. M. & Wu, M. C. Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). J. Polym. Sci. Part B: Polym.r Phys. 43, 1662-1672 (2005).
    [20] Gan, Z., Kuwabara, K., Abe, H., Iwata, T. & Doi, Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films. Polym. Degrad. Stab. 87, 191-199 (2005).
    [21] Woo, E. M., Chang, C. S. & Wu, M. C. A new crystal morphology of straight-stalk dendrites in blends of poly(butylene adipate) with amorphous poly(vinyl acetate). Mater. Lett. 61, 3542-3546 (2007).
    [22] Woo, E. M., Yen, K. C. & Wu, M. C. Analysis of multiple melting behavior of spherulites comprising ring-band shell/ringless core in polymorphic poly(butylene adipate). J. Polym. Sci. Part B: Polym. Phys. 46, 892-899 (2008).
    [23] Lugito, G. & Woo, E. M. Crystal polymorphism and spherulites in poly(butylene adipate) diluted with strongly versus weakly interacting amorphous polymers. Macromol. Chem. Phys. 213, 2228-2237 (2012).
    [24] Frömsdorf, A., Woo, E. M., Lee, L. T., Chen, Y. F. & Förster, S. Atomic force microscopy characterization and interpretation of thin-film poly(butylene adipate) spherulites with ring bands. Macromol. Rapid Commun. 29, 1322-1328 (2008).
    [25] Hsieh, Y.-T. & Woo, E. M. Microscopic lamellar assembly and birefringence patterns in poly(1,6-hexamethylene adipate) packed with or without amorphous poly(vinyl methyl ether). Ind. Eng. Chem. Res. 52, 3779-3786 (2013).
    [26] Woo, E. M., Mandal, T. K. & Lee, S. C. Relationships between ringed spherulitic morphology and miscibility in blends of poly(ɛ-caprolactone) with poly(benzyl methacrylate) versus poly(phenyl methacrylate). Colloid Polym. Sci. 278, 1032-1042 (2000).
    [27] Zhang, J. & Qiu, Z. Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly(ε-caprolactone)/thermally reduced graphene nanocomposites. Ind. Eng. Chem. Res. 50, 13885-13891 (2011).
    [28] Jiang, Y., Luo, Y., Fan, Z., Wang, X., Xu, J., Guo, B. & Li, L. Observation of banded spherulites and lamellar structures by atomic force microscopy. Sci. China, Ser B 46, 152-159 (2003).

    Chapter 2
    [1] Carlton, R. A. Pharmaceutical microscopy. Carlton, R. A. (Ed.), Springer, New York, USA, 7-64 (2011).
    [2] Marentette, J. M. & Brown, G. R. Polymer spherulites: I. Birefringence and morphology. J. Chem. Educ. 70, 435-439 (1993).
    [3] Furuhashi, Y., Ito, H., Kikutani, T., Yamamoto, T., Kimizu, M. & Cakmak, M. Structural analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers prepared by drawing and annealing processes. J. Polym. Sci. Part B: Polym. Phys.36, 2471-2482 (1998).
    [4] Delly, J. G. Essentials of Polarized Light Microscopy. Delly, J. G. (Ed.), College of Microscopy, Illinois, USA, Fifth Edition, 19-22 (2008).
    [5] Kołbuk, D., Sajkiewicz, P. & Kowalewski, T. A. Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. Eur.Polym. J. 48, 275-283 (2012).
    [6] Bogdanov, B. G. & Michailov, M. Handbook of polyolefins. Vasile, C. (Ed.), CRC Press, New York, USA, Second Edition, 321-358 (2002).
    [7] Edmondson, S., Osborne, V. L. & Huck, W. T. S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev.33, 14-22 (2004).
    [8] Minko, S. Polymer Surfaces and Interfaces. Stamm, M. (Ed.), Springer, Heidelberg, Germany, First Edition, 215-234 (2008).
    [9] Huang, W., Kim, J. B., Bruening, M. L. & Baker, G. L. Functionalization of surfaces by water-accelerated atom-transfer radical polymerization of hydroxyethyl methacrylate and subsequent derivatization. Macromolecules 35, 1175-1179 (2002).
    [10] Babu, K. & Dhamodharan, R. Synthesis of polymer grafted magnetite nanoparticle with the highest grafting density via controlled radical polymerization. Nanoscale Res. Lett. 4, 1090-1102 (2009).
    [11] Bicerano, J. Prediction of polymer properties. Bicerano, J. (Ed.), CRC Press, New York, USA, Third Edition, 261-291 (2002).
    [12] Owens, D. K. & Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741-1747 (1969).
    [13] Arifuzzaman, M., Wu, Z. L., Kurokawa, T., Kakugo, A. & Gong, J. P. Swelling-induced long-range ordered structure formation in polyelectrolyte hydrogel. Soft Matter 8, 8060-8066 (2012).

    Chapter 3
    [1] Barham, P. J., Keller, A., Otun, E. L. & Holmes, P. A. Crystallization and morphology of a bacterial thermoplastic: Poly-3-hydroxybutyrate. J. Mater. Sci. 19, 2781-2794 (1984).
    [2] Hobbs, J. K., Binger, D. R., Keller, A. & Barham, P. J. Spiralling optical morphologies in spherulites of poly(hydroxybutyrate). J. Polym. Sci. Part B: Polym. Phys. 38, 1575-1583 (2000).
    [3] Gazzano, M., Focarete, M. L., Riekel, C. & Scandola, M. Bacterial poly(3-hydroxybutyrate):  An optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1, 604-608 (2000).
    [4] Gazzano, M., Focarete, M. L., Riekel, C., Ripamonti, A. & Scandola, M. Structural investigation of poly(3-hydroxybutyrate) spherulites by microfocus X-ray diffraction. Macromol. Chem. Phys. 202, 1405-1409 (2001).
    [5] Hikima, Y., Morikawa, J. & Hashimoto, T. Wavenumber dependence of FT-IR image of molecular orientation in banded spherulites of poly(3-hydroxybutyrate) and poly(L-lactic acid). Macromolecules 46, 1582-1590 (2013).
    [6] Kunioka, M., Tamaki, A. & Doi, Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3- hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 22, 694-697 (1989).
    [7] Inoue, Y. Solid-state structure and properties of bacterial copolyesters. J. Mol. Struct. 441, 119-127 (1998).
    [8] Ye, H. M., Wang, Z., Wang, H. H., Chen, G. Q. & Xu, J. Different thermal behaviors of microbial polyesters poly(3-hydroxybutyrate-co-3-hydroxyvalerate- co-3-hydroxyhexanoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymer 51, 6037-6046, (2010).
    [9] Jiang, Y., Zhou, J. J., Li, L., Xu, J., Guo, B. H., Zhang, Z. M., Wu, Q., Chen, G. Q., Weng, L. T., Cheung, Z. L. & Chan, C. M. Surface properties of poly(3- hydroxybutyrate-co-3-hydroxyvalerate) banded spherulites studied by atomic force microscopy and time-of-flight secondary ion mass spectrometry. Langmuir 19, 7417-7422 (2003).
    [10] Xu, J., Guo, B. H., Zhang, Z. M., Zhou, J. J., Jiang, Y., Yan, S., Li, L., Wu, Q., Chen, G. Q. & Schultz, J. M. Direct AFM observation of crystal twisting and organization in banded spherulites of chiral poly(3-hydroxybutyrate-co- 3-hydroxyhexanoate). Macromolecules 37, 4118-4123 (2004).
    [11] Wang, Z., Li, Y., Yang, J., Gou, Q., Wu, Y., Wu, X., Liu, P. & Gu, Q. Twisting of lamellar crystals in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) ring-banded spherulites. Macromolecules 43, 4441-4444 (2010).
    [12] Chang, L., Chou, Y. H. & Woo, E. M. Effects of amorphous poly(vinyl acetate) on crystalline morphology of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid). Colloid Polym. Sci. 289, 199-211 (2011).
    [13] Bluhm, T. L., Hamer, G. K., Marchessault, R. H., Fyfe, C. A. & Veregin, R. P. Isodimorphism in bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19, 2871-2876 (1986).
    [14] Mitomo, H., Morishita, N. & Doi, Y. Composition range of crystal phase transition of isodimorphism in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 26, 5809-5811 (1993).
    [15] Mitomo, H., Morishita, N. & Doi, Y. Structural changes of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fractionated with acetone-water solution. Polymer 36, 2573-2578 (1995).
    [16] Yamada, S., Wang, Y., Asakawa, N., Yoshie, N. & Inoue, Y. Crystalline structural change of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with narrow compositional distribution. Macromolecules 34, 4659-4661 (2001).
    [17] Iwata, T. & Doi, Y. Morphology and crystal structure of solution-grown single crystals of poly[(R)-3-hydroxyvalerate]. Macromolecules 33, 5559-5565 (2000).
    [18] Kamiya, N., Sakurai, M., Inoue, Y., Chûjô, R. & Doi, Y. Study of cocrystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by solid-state high-resolution 13C NMR spectroscopy and differential scanning calorimetry. Macromolecules 24, 2178-2182 (1991).
    [19] VanderHart, D. L., Orts, W. J. & Marchessault, R. H. 13C NMR determination of the degree of cocrystallization in random copolymers of poly(β-hydroxybutyrate- co-β-hydroxyvalerate). Macromolecules 28, 6394-6400 (1995).
    [20] Furuhashi, Y., Ito, H., Kikutani, T., Yamamoto, T., Kimizu, M. & Cakmak, M. Structural analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers prepared by drawing and annealing processes. J. Polym. Sci. Part B: Polym. Phys. 36, 2471-2482 (1998).
    [21] Su, C. C., Woo, E. M. & Hsieh, Y. T. Perpendicularly oriented lamellae in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) blended with an amorphous polymer: ultra-thin to thick films. Phys. Chem. Chem. Phys. 15, 2495-2506 (2013).
    [22] Fujiwara, Y. The superstructure of melt-crystallized polyethylene. I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings. J. Appl. Polym. Sci. 4, 10-15 (1960).
    [23] Organ, S. J. & Barham, P. J. An etching technique for poly(3-hydroxybutyrate) and its copolymers. J. Mater. Sci. Lett. 8, 621-623 (1989).
    [24] Saracovan, I., Cox, J. K., Revol, J. F., Manley, R. S. J. & Brown, G. R. Optically active polyethers. 3. On the relationship between main-chain chirality and the lamellar morphology of solution-grown single crystals. Macromolecules 32, 717-725 (1999).
    [25] Ye, H. M., Wang, J. S., Tang, S., Xu, J., Feng, X. Q., Guo, B. H., Xie, X. M., Zhou, J. J., Li, L., Wu, Q. & Chen, G. Q. Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules 43, 5762-5770 (2010).
    [26] Ye, H. M., Xu, J., Guo, B. H. & Iwata, T. Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: Dependence on growth axis. Macromolecules 42, 694-701 (2009).
    [27] Martuscelli, E., Silvestre, C. & Gismondi, C. Morphology, crystallization and thermal behaviour of poly(ethylene oxide)/poly(vinyl acetate) blends. Makromol. Chem. 186, 2161-2176 (1985).
    [28] Alfonso, G. C. & Russell, T. P. Kinetics of crystallization in semicrystalline/amorphous polymer mixtures. Macromolecules 19, 1143-1152 (1986).
    [29] Lee, J. C., Tazawa, H., Ikehara, T. & Nishi, T. Miscibility and crystallization behavior of poly(butylene succinate) and poly(vinylidene fluoride) blends. Polym. J. 30, 327-339 (1998).
    [30] Xing, P., Dong, L., An, Y. & Feng, Z. Miscibility and crystallization of poly(β-hydroxybutyrate) and poly(p-vinylphenol) blends. Macromolecules 30, 2726-2733 (1997).
    [31] Di Lorenzo, M. L. Spherulite growth rates in binary polymer blends. Prog. Polym. Sci. 28, 663-689 (2003).
    [32] Xu, J., Guo, B. H., Zhou, J. J., Li, L., Wu, J., & Kowalczuk, M. Observation of banded spherulites in pure poly(L-lactide) and its miscible blends with amorphous polymers. Polymer 46, 9176-9185 (2005).
    [33] Toda, A., Okamura, M., Taguchi, K., Hikosaka, M. & Kajioka, H. Branching and higher order structure in banded polyethylene spherulites. Macromolecules 41, 2484-2493 (2008).
    [34] Toda, A., Taguchi, K. & Kajioka, H. Growth of banded spherulites of poly(-caprolactone) from the blends: An examination of the modeling of spherulitic growth. Polymer 53, 1765-1771 (2012).
    [35] Toda, A., Taguchi, K., Hikosaka, M. & Kajioka, H. Branching and higher order structure in banded poly(vinylidene fluoride) spherulites. Polym. J 40, 905-909 (2008).
    [36] Shtukenberg, A. G., Punin, Y. O., Gunn, E. & Kahr, B. Spherulites. Chem. Rev. 112, 1805-1838 (2011).
    [37] Schultz, J. M. Self-generated fields and polymer crystallization. Macromolecules 45, 6299-6323 (2012).
    [38] Shtukenberg, A. G., Punin, Y. O., Gujral, A. & Kahr, B. Growth actuated bending and twisting of single crystals. Angew. Chem. Int. Ed. 53, 672-699 (2014).
    [39] Saracovan, I., Keith, H. D., Manley, R. S. J. & Brown, G. R. Banding in spherulites of polymers having uncompensated main-chain chirality. Macromolecules 32, 8918-8922 (1999).
    [40] Keith, H. D. Banding in spherulites: two recurring topics. Polymer 42, 9987-9993 (2001).
    [41] Wang, T., Wang, H., Li, H., Gan, Z. & Yan, S. Banded spherulitic structures of poly(ethylene adipate), poly(butylene succinate) and in their blends. Phys. Chem. Chem. Phys. 11, 1619-1627 (2009).

    Chapter 4
    [1] Okerberg, B. C., Berry, B. C., Garvet T. R., Douhlas, J. F., Karim A. & Soles C. L. Competition between crystallization and dewetting fronts in thin polymer films. Soft Matter 5, 562-567 (2009).
    [2] Qiao, C., Jiang, S., Ji, X., An, L. & Jiang, B. Studies on confined crystallization behavior of polycaprolactone thin films. Front. Chem. China 2, 343-348 (2007).
    [3] Fujiwara, Y. The superstructure of melt-crystallized polyethylene. I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings. J. Appl. Polym. Sci. 4, 10-15 (1960).
    [4] Furuhashi, Y., Ito H., Kikutani, T., Yamamoto, T., Kimizu, M. & Cakmak, M. Structural analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers prepared by drawing and annealing processes. J. Polym. Sci. Part B: Polym. Phys. 36, 2471-2482 (1998).
    [5] Hsieh, Y. T. & Woo, E. M. Microscopic lamellar assembly and birefringence patterns in poly(1,6-hexamethylene adipate) packed with or without amorphous poly(vinyl methyl ether). Ind. Eng. Chem. Res. 52, 3779-3786 (2013).
    [6] Kołbuk, D., Sajkiewicz, P. & Kowalewski, T. A. Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. Eur. Polym. J. 48, 275-283 (2012).
    [7] Husseman, M., Malmström, E. E., McNamara, M., Mate, M., Mecerreyes, D., Benoit, D. G., Hedrick, J. L., Mansky, P., Huang, E., Russell, T. P. & Hawker, C. J. Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32, 1424-1431 (1999).
    [8] Edmondson, S., Osborne, V. L. & Huck, W. T. S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev. 33, 14-22 (2004).
    [9] Mansky, P., Liu, Y., Huang, E., Russell, T. P. & Hawker, C. Controlling polymer-surface interactions with random copolymer brushes. Science 275, 1458-1460 (1997).
    [10] Minko, S., Gafijchuk, G., Sidorenko, A. & Voronov, S. Radical polymerization initiated from a solid substrate. 1. Theoretical background. Macromolecules 32, 4525-4531 (1999).
    [11] Zhao, B. Synthesis of binary mixed homopolymer brushes by combining atom transfer radical polymerization and nitroxide-mediated radical polymerization. Polymer 44, 4079-4083 (2003).
    [12] Kressler, J., Wang, C. & Kammer, H. W. Structure formation in thin poly(ε-caprolactone) films. Langmuir 13, 4407-4412 (1997).
    [13] Liu, J., Li, H., Yan, S., Xiao, Q. & Petermann, J. Surface induced crystallization of PCL on oriented PE substrates: epitaxy and transcrystallization. Colloid Polym. Sci. 281, 601-607 (2003).
    [14] Hobbs, S. Y. & Billmeyer, F. W. Crystal unit-cell dimensions and densities of linear aliphatic polyesters. J. Polym. Sci. Part A-2: Polym. Phys. 7, 1119-1121 (1969).
    [15] Woo, E. M., Wu, P. L., Wu, M. C. & Yan, K. C. Thermal behavior of ring-band versus Maltese-cross spherulites: Case of monomorphic poly(ethylene adipate). Macromol. Chem. Phys. 207, 2232-2243 (2006).
    [16] Yang, J., Pan, P., Dong, T. & Inoue, Y. Crystallization kinetics and crystalline structure of biodegradable Poly(ethylene adipate). Polymer 51, 807-815 (2010).
    [17] Lugito, G. Polymorphism, lamellae, and spherulites in blends of poly(1,4-butylene adipate), poly(ethylene adipate), and amorphous polymers. MS Thesis, National Cheng Kung University, Taiwan (2012).
    [18] Lugito, G. & Woo, E. Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy. Colloid Polym. Sci. 291, 817-826 (2013).
    [19] Gan, Z., Kuwabara, K., Abe, H., Iwata, T. & Doi, Y. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate). Biomacromolecules 5, 371-378 (2004).
    [20] Gan, Z., Kuwabara, K., Abe, H., Iwata, T. & Doi, Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films. Polym. Degrad. Stabil. 87, 191-199 (2005).
    [21] Woo, E. M. & Wu, M. C. Thermal and X-ray analysis of polymorphic crystals, melting, and crystalline transformation in poly(butylene adipate). J. Polym. Sci. Part B: Polym. Phys. 43, 1662-1672 (2005).
    [22] Pan, P. & Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 34, 605-640 (2009).
    [23] Lugito, G. & Woo, E. M. Crystal polymorphism and spherulites in poly(butylene adipate) diluted with strongly versus weakly interacting amorphous polymers. Macromol. Chem. Phys. 213, 2228-2237 (2012).
    [24] Woo, E. M., Chang, C. S. & Wu, M. C. A new crystal morphology of straight-stalk dendrites in blends of poly(butylene adipate) with amorphous poly(vinyl acetate). Mater. Lett. 61, 3542-3546 (2007).
    [25] Gestí, S., Almontassir, A., Casas, M. T. & Puiggalí, J. Crystalline structure of poly(hexamethylene adipate). Study on the morphology and the enzymatic degradation of single crystals. Biomacromolecules 7, 799-808 (2006).
    [26] Chang, H., Zhang, J., Li, L., Wang, Z., Yang C., Takahashi, I., Ozaki, Y. & Yan, S. A study on the epitaxial ordering process of the polycaprolactone on the highly oriented polyethylene substrate. Macromolecules 43, 362-366 (2009).
    [27] Bittiger, H., Marchessault, R. H. & Niegisch, W. D. Crystal structure of poly-ε-caprolactone. Acta Cryst. B26, 1923-1927 (1970).
    [28] Woo, E. M., Mandal, T. K. & Lee, S. C. Relationships between ringed spherulitic morphology and miscibility in blends of poly(ɛ-caprolactone) with poly(benzyl methacrylate) versus poly(phenyl methacrylate). Colloid and Polym. Sci. 278, 1032-1042 (2000).
    [29] Zhang, J. & Qiu, Z. Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly(ε-caprolactone)/thermally reduced graphene nanocomposites. Ind. Eng. Chem. Res. 50, 13885-13891 (2011).
    [30] Ohno, K., Morinaga, T., Koh, K., Tsujii, Y. & Fukuda, T. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38, 2137-2142 (2005).
    [31] Kobayashi, M. & Takahara, A. Synthesis and frictional properties of poly(2,3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem. Lett. 34, 1582-1583 (2005).
    [32] Sakata, H., Kobayashi, M., Otsuka, H. & Takahara, A. Tribological properties of poly(methyl methacrylate) brushes prepared by surface-initiated atom transfer radical polymerization. Polym. J. 37, 767-775 (2005).
    [33] Fowkes, F. M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. 66, 382 (1962).
    [34] Fowkes, F. M. Attractive forces at interfaces. Ind. Eng. Chem. 56, 40-52 (1964).
    [35] Owens, D. K. & Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741-1747 (1969).
    [36] Kaelble, D. H. Dispersion-polar surface tension properties of organic solids. J. Adhesion 2, 66-81 (1970).
    [37] Jańczuk, B. & Białlopiotrowicz, T. Surface free-energy components of liquids and low energy solids and contact angles. J. Colloid Interface Sci. 127, 189-204 (1989).
    [38] Chen, J. K., Hsieh, C. Y., Huang, C. F., Li, P. M., Kuo, S. W. & Chang, F. C. Using solvent immersion to fabricate variably patterned poly(methyl methacrylate) brushes on silicon surfaces. Macromolecules 41, 8729-8736 (2008).
    [39] Kobayashi, M., Terayma, Y., Yamaguchi, H., Terada, M., Murakami, D., Ishihara, K. & Takahara, A. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28, 7212-7222 (2012).
    [40] De Kesel, C., Lefèvre, C., Nagy, J. B. & David, C. Blends of polycaprolactone with polyvinylalcohol: A DSC, optical microscopy and solid state NMR study. Polymer 40, 1969-1978 (1999).
    [41] Sekosan, G. & Vasanthan, N. Morphological changes of annealed poly-ε-caprolactone by enzymatic degradation with lipase. J. Polym. Sci. Part B: Polym. Phys. 48, 202-211 (2010).
    [42] Chen, B. & Evans, J. R. G. Poly(ε-caprolactone)−clay nanocomposites:  structure and mechanical properties. Macromolecules 39, 747-754 (2005).
    [43] Higaki, Y., Okazaki, R. & Takahara, A. Semirigid biobased polymer brush: Poly(α-methylene-γ-butyrolactone) brushes. ACS Macro Lett. 1, 1124-1127 (2012).
    [44] Kobayashi, M., Terayama, Y., Kikuchi, M. & Takahara, A. Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter 9, 5138-5148 (2013).
    [45] Kim, B., Ryu, D. Y., Pryamitsyn, V. & Ganesan, V. Dewetting of PMMA on PS−brush substrates. Macromolecules 42, 7919-7923 (2009).
    [46] Yamamoto, S., Ejaz, M., Tsujii, Y., Matsumoto, M. & Fukuda, T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 1. Effect of chain length. Macromolecules 33, 5602-5607 (2000).
    [47] Yamamoto, S., Ejaz, M., Tsujii, Y. & Fukuda, T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density. Macromolecules 33, 5608-5612 (2000).
    [48] Hsu, J. P. & Lin, S. H. Analysis of co-extrusion process for preparation of gradient index plastic optical fiber. Polymer 44, 5461-5467 (2003).
    [49] Masatoshi, T., Sato, O., Inagaki, Y., Nomura, A., Tsujii, Y., Kang, S., Fukuda, T. & Watanabe, J. High-density poly(methyl methacrylate) brushes as anchoring surfaces of nematic liquid crystals. Jpn. J. Appl. Phys. 50, 071701 (2011).
    [50] Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 68, 75-78 (1992).
    [51] Meyer, A., Yen, K. C., Li, S. H., Förster, S. & Woo, E. M. Atomic-force and pptical microscopy investigations on thin-film morphology of spherulites in melt-crystallized poly(ethylene adipate). Ind. Eng. Chem. Res. 49, 12084-12092 (2010).
    [52] Nurkhamidah, S. & Woo, E. M. Phase-separation-induced single-crystal morphology in poly(L-lactic acid) blended with poly(1,4-butylene adipate) at specific composition. J. Phys. Chem. B 115, 13127-13138 (2011).
    [53] Frömsdorf, A., Woo, E. M., Lee, L. T., Chen, Y. F. & Förster, S. Atomic force microscopy characterization and interpretation of thin-film poly(butylene adipate) spherulites with ring bands. Macromol. Rapid Commun. 29, 1322-1328 (2008).
    [54] Zhang, Y., Liao, X., Luo, X., Liu, S., Yang, Q. & Li, G. Concentric ring-banded spherulites of six-arm star-shaped poly(ε-caprolactone) via subcritical CO2. RSC Adv. 4, 10144-10150 (2014).
    [55] Woo, E. M. & Mandal, T. K. Thermal transition behavior in the miscible polyester/acrylic polymer pair poly(ε-caprolactone) and poly(phenyl methacrylate). Macromol. Rapid Commun. 20, 46-49 (1999).
    [56] Chen, Y. F. & Woo, E. M. Growth regimes and spherulites in thin-film poly(ε-caprolactone) with amorphous polymers. Colloid Polym. Sci. 286, 917-926 (2008).
    [57] Liu, K. & Kiran, E. High-pressure solution blending of poly(ε-caprolactone) with poly(methyl methacrylate) in acetone+carbon dioxide. Polymer 49, 1555-1561 (2008).

    下載圖示 校內:2017-07-29公開
    校外:2017-07-29公開
    QR CODE