簡易檢索 / 詳目顯示

研究生: 邱逸閎
Chiu, Yi-Hong
論文名稱: 自組裝功能性單體及高分子之合成及特性研究
Study on the Synthesis and Characterization of Self-Assembled Functional Monomers and Polymers
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 129
中文關鍵詞: 自組裝奈米銀線環糊精包容錯合物活性自由基聚合兩嵌段式共聚物
外文關鍵詞: elf-assembly, silver nanowire, cyclodextrin, inclusion complexes, atom transfer radical polymerization, diblock copolymer
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自組裝技術在製備奈米材料上,因具備了成本低、可適用於廣泛材料上等優勢,而引起廣大的注意。本研究為了瞭解不同化學結構對自組裝行為的影響,設計且合成了一系列新穎性的單體及高分子,在結構中分別導入了具有光學活性、光敏感性或發光性官能基。而研究中所合成的化合物均以1H-NMR, 13C-NMR 和FTIR鑑定其化學結構,並利用DSC, TGA, UV-vis和POM測量其熱性質、光學性質和光異構化反應,最後以POM, SEM, TEM和AFM觀察自組裝所形成之微結構。

    本研究依所製備超分子之特性不同而分為四個部分,在第一部分利用兩性分子以逆微胞技術製備銀奈米粒子,所製備的奈米銀粒子可藉由界面活性劑長碳鏈段間的凡得瓦力作用,在適當條件下,可自組裝誘導出中空銀奈米管的生成,由於奈米級銀粒子具有低熔點之特性,故自組裝的銀奈米管可於500℃下燒結得到銀奈米線,並完全移除有機模板。本實驗以octanoic acid 和甲基丙烯酸甲酯作為界面活性劑及有機相,硝酸銀和硼氫化鈉為銀奈米粒子的前驅物和還原劑,藉由改變水和界面活性劑的莫耳比 (w)、硝酸銀水溶液的濃度及不同的有機相,探討不同變因對銀奈米粒子自組裝行為的影響。實驗中所製備之奈米銀粒子經UV-vis、XRD及EDXA鑑定;而自組裝奈米管之微結構可藉由TEM、SEM及AFM量測。

    光學活性化合物一般會表現出特有之立體排列及特殊之分子間引力關係,因而形成在立體結構上具有非常特殊之物性。故在研究的第二部分,合成出一個新穎性光學活性單體,在末端導入膽固醇基團,並將此單體與β-環糊精形成包容錯合物。經1H-NMR分析結果顯示,平均約有一到二個β-環糊精分子與光學活性單體形成包容錯合物,可誘導出螺旋結構。此自組裝包容錯合物的形成可以藉由SEM以及TEM來鑑定其微結構。此自組裝包容錯合物具有單體的性質,因此可利用benzoyl peroxide作為光起始劑將其聚合。經聚合後的自組裝的超分子,經POM和圓光色差光譜儀(circular dichrosim, CD)證實其高秩序性排列及其螺旋結構的存在。本研究提供了一個簡易製備具螺旋結構之高分子的方法。甚至將聚合後包容錯合物超分子當中的β-環糊精去除後,經POM和CD證實失去β-環糊精的高分子,可藉由高分子鏈的纏繞以及側鏈膽固醇基團間的作用力維持其螺旋結構。

    在研究的第三部分,嘗試合成具有共軛鏈段的發光基團衍生物 (phenyl- [1,3,4]-oxadiazolyl group) ,並將此單體與β-環糊精形成包容錯合物。經1H-NMR分析結果顯示,平均約有一到二個β-環糊精分子與此單體形成包容錯合物,並可誘導出高次序性的纖維狀結構,此自組裝之包容錯合物在POM下展現具有異方性排列特性。而此自組裝之包容錯合物在螢光(photoluminescence, PL)光譜下,展現了光致誘導螢光增強的效應,推測應是β-環糊精可與發光基團產生分子間的作用力,進而抑制了發光基團將能量以震動或轉動的方式釋放,而有效的將能量以放光的形式釋出。另外,環糊精腔體的疏水性,也減少發光基團與極性溶液發生外部轉換,而造成螢光強度減弱的機會。

    在論文的最後一個部分,嘗試合成具有光敏感性偶氮苯衍生物單體,並利用活性自由基聚合法製備兩嵌段式共聚物,以甲基丙烯酸甲酯做為第一個鏈段;而第二鏈段則是由光敏性偶氮苯衍生物高分子所組成,此兩嵌段式共聚物(PMMA- b-PAzoMA)在濃度為2 wt %的混合溶液中(THF/H2O mixture of 1:2),可自組裝形成奈米微球,若進一步將此結構經紫外光照射後,可觀察到奈米棒的生成,此構形上的變化主要是因為偶氮苯衍生物鏈段,經紫外光照射後,會誘導光異構化反應的發生,此時不僅僅是偶氮苯分子化學結構發生變化,也改變了分子的偶極矩和極性,因而影響了自組裝構形在溶液中的改變。奈米微球和奈米棒的構形變化可藉由紫外光與可見光的交替照射,為一可逆的變化過程。

    Self-assembly has become a very effective and promising approach to synthesize a wide range of novel nanoscale materials. In our research work, a series of novel monomers and polymers containing chiral, photosensitive, chromophore groups were designed and synthesized to investigate the structure-property relation to self- assembled supramolecules. The chemical structures of synthesized compounds were identified using 1H-NMR, 13C-NMR and FTIR. The thermal, optical, photo-induced properties of these compounds were analyzed using DSC, TGA, UV-vis and POM. The morphologies of self-assembled supramolecules were analyzed using POM, SEM, TEM and AFM.

    This dissertation consists of four parts. In the first part, we provide a novel method for the fabrication of silver nanowires under controlled conditions. Silver nanoparticles were synthesized using a surfactant of octanoic acid via a reverse micelle technique. Hollow nanotubes were formed under various controlled conditions through self-assembly of surfactant clusters of reversed micelles containing silver nanoparticles. These organized nanotubes were used as a structure-directing template for the preparation of silver nanowires. Self-assembled nanotube construction and the cross section of the nanotubes were investigated using SEM and TEM. Further sintering treatment at 500 oC burned away the organic compounds and left silver nanowires. The construction of the nanowires was confirmed using SEM, XRD, and EDXA.

    In the second part, in order to investigate chiral effect on formation of inclusion complex, two kinds of novel chiral monomer end-capped with a cholesteryl group and achiral monomer end-capped with a phenyl-[1,3,4]oxadiazolyl group were synthesized. As results, the chiral monomer containing a cholesteryl group [cholesteryl-4-(6-acryloyloxyhexyloxy) benzoate (CAHB)] threaded with β-cyclo- dextrin was synthesized in order to induce the formation of a helical polymer. 1H-NMR studies revealed that one or two cyclodextrin molecules were threaded onto the synthesized chiral monomer, leading to the formation of a helical construction of self-assembled inclusion complexes. The monomeric self-assembled inclusion complex was further polymerized using benzoyl peroxide as a photoinitiator. Both the highly ordered alignment and the helical structure of self-assembled supramolecules were confirmed using polarized optical microscopy and circular dichroism spectroscopy, respectively.

    In the third part, achiral monomer containing a chromophore group (phenyl-[1,3,4]-oxadiazolyl group) threaded with one or two β-cyclodextrin was synthesized, leading to the formation of fibrous construction of self-assembled inclusion complexes. The highly ordered alignment of self-assembled supramolecules was confirmed using polarized optical microscopy. The self-assembled inclusion complex revealed enhancement of photo-induced fluorescence due to significant interaction between the phenyl-[1,3,4]-oxadiazolyl moiety of monomer and β-cyclodextrins.

    In the final part, a novel monomer, ethyl 4-[4-(11-methacryloyloxyundecyloxy) phenyl azobenzoyl-oxyl] benzoate, containing a photoisomerizable N=N group was synthesized. The monomer with methyl methacrylate was further diblock copolymerized. Amphiphilic diblock copolymer poly(methyl methacrylate-block -ethyl 4-[4-(11-methacryloyloxy-undecyloxy) phenyl azobenzoyl-oxyl] benzoate (PMMA-b-PAzoMA) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes of micellar structure between sphere and rod-like particles took place as a result of the reversible E-Z photoisomerization of azobenzene segments in PMMA-b-PAzoMA. Due to upon UV irradiation, the hydrophilicity of PAzoMA segment may be increased (trans-form into cis-form) leading to the aggregation of nanoparticles. The increase of solubility of PAzoMA in water may increase the mobility of the PAzoMA segment moving to the surface of the rod-like nanoparticle. Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using AFM and SEM analyses.

    Abstract………………………………………I 中文摘要………………………………………III Acknowledgments………………………………………V Table of Contents………………………………………VII List of Figures………………………………………XIII List of Schemes………………………………………XIX List of Tables………………………………………XXI Chapter 1. General Introduction……………………………………….1 1-1 INTRODUCTION OF NANOMATERIAL 1 1-2 MICROFABRICATION 1 1-3 RESEARCH MOTIVATIONS 3 Chapter 2. Review And Theoretical Background …………………….7 2-1 SELF-ASSEMBLY 7 2-1.1 Definition of self-assembly 7 2-1.2 Self-assembly of amphiphilic molecules 7 2-1.3 Surfactants: packing-directed self-assembly 8 2-2 SYNTHESIS OF SILVER NANOPARTICLES 9 2-2-1 Synthesis of silver nanoparticles by reverse micelle method 10 2-2.2 Introduction of reverse micelle[12] 10 2-2.3 Reaction dynamics in reverse micelle 11 2-2.4 Synthesis of silver nanoparticles by surfactant reverse micelles 12 2-2.5 Self-assembly of silver nanoparticles 14 2-3 AMPHIPHILIC BLOCK POLYMER 16 2-3.1 Amphiphilic block copolymers self-assembly in solution 18 2-3.2 Photoresponsive block copolymers 19 2-3.3 Synthesis of amphiphilic diblock copolymer 24 2-4 CYCLODEXTRIN 29 2-4.1 Properties of cyclodextrins 30 2-4.2 CD inclusion complexes 30 2-4.3 Fabrication of inclusion complexes 32 2-4.4 Self-assembly of CD inclusion complexes 33 2-4.5 Application of CD inclusion complexes 35 Chapter 3. The Fabrication of Polycrystalline Silver Nanowires via Self-Assembled Nanotubes at Controlled Temperature …………….37 3-1 INTRODUCTION 37 3-2 EXPERIMENTAL SECTION 39 3-2.1 Instruments 39 3-2.2 Preparation of silver nanoparticles and formation of silver nanotubes 40 3-3 RESULTS AND DISCUSSION 41 3-3.1 Effect of the factor w on the formation of silver nanotubes 41 3-3.2 Effect of the organic phase on the formation of silver nanotubes 44 3-3.3 Effect of the concentration on the formation of silver nanaotubes 47 3-3.4 The construction of silver nanotubes 48 3-3.5 The thermal properties of silver nanoparticles 50 3-3.6 The existence of silver nanoparticles 52 3-3.7 Mechanism for the formation of silver nanowires 54 3-4 SUMMARY 56 Chapter 4. Fabrication and Characterization of Self-Assembled β-Cyclodextrin Threaded Monomers and Induced Helical Polymer…………………………………………………………………………..57 4-1 INTRODUCTION 57 4-2 EXPERIMENTAL SECTION 58 4-2.1 Instruments 58 4-2.2 Monomer and inclusion complex preparation 59 4-2.3 Polymerization of self-assembled monomers 62 4-3 RESULTS AND DISCUSSION 62 4-3.1 Synthesis of monomers threaded with β-cyclodextrin 62 4-3.2 Polymerization of β-cyclodextrin threaded monomers 69 4-4 SUMMARY 71 Chapter 5. Polymerization and Characterization of Self-Assembled β-Cyclodextrin-Threaded Chiral Monomers…………………….. 73 5-1 INTRODUCTION 73 5-2 EXPERIMENTAL SECTION 74 5-2.1 Instruments 74 5-2.2 Monomer and inclusion complex preparation 75 5-2.3 Polymerization of the self-assembled monomers 77 5-2.4 Removal of β-cyclodextrin from the inclusion complex polymer 77 5-3 RESULTS AND DISCUSSION 78 5-3.1 Solvent effect on the self-assembly of the inclusion complexes 78 5-3.2 Characterization of polymerized self-assembled inclusion complexes 79 5-3.3 Removal of the threaded β-cyclodextrin from pendant groups of polymers 82 5-4 SUMMARY 84 Chapter 6. The Spectrophotometric Study of a Fluorescence- Enhanced Inclusion Complex Threaded with β-Cyclodextrin: Synthesis and Characterization……………………………………….85 6-1 INTRODUCTION 85 6-2 EXPERIMENTAL SECTION 87 6-2.1 Instruments 87 6-2.2 Monomer preparation 87 6-2.3 Preparation of monomer threaded with β-cyclodextrin 89 6-3 RESULTS AND DISCUSSION 90 6-3.1 Synthesis of inclusion complex 90 6-3.2 Spectrophotometric Analysis 91 6-3.3 Supramolecular Properties 95 6-3.4 Polymerization of the Self-Assembled Inclusion Complex 97 6-4 SUMMARY 97 Chapter 7. Behaviors of Self-Assembled Diblock Copolymer with Pendant Photosensitive Azobenzene Segments ……………………...99 7-1 INTRODUCTION 99 7-2EXPERIMENTAL SECTION 101 7-2.1 Instruments 101 7-2.2 Materials 101 7-2.3Monomer preparation 101 7-2.4 Synthesis of diblock copolymers 103 7-2.5 Self-assembly of diblock copolymer PMMA-b-PAzoMA 104 7-3 RESULTS AND DISCUSSION 105 7-3.1 Synthesis of diblock copolymer PMMA-b-PAzoMA 105 7-3.2 Self-assembly of diblock copolymer PMMA-b-PAzoMA in solvent 108 7-3.3 Thermal annealing of diblock copolymer 111 7-3.4 Solvent annealing of diblock copolymer films 113 7-4 SUMMARY 115 Chapter 8. Conclusions …………………………………………...…117 References……………………………………………………………..119 Appendix……………………………………………………………...127

    [1] B. Grzybowski and G. Whitesides, Science 2002, 295, 2418.
    [2] S. Forster and T. Plantenberg, Angewandte Chemie-International Edition 2002, 41, 689-714.
    [3] M. Lawrence, D. Barlow, R. Harvey and R. In in BH Robinson, Editor, Self-Assembly, Vol. IOS Press, Amsterdam, 2003.
    [4] T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev 2005, 105, 1401-1444.
    [5] Z. Zhang, R. Patel, R. Kothari, C. Johnson, S. Friberg and P. Aikens, J. Phys. Chem. B 2000, 104, 1176-1182.
    [6] B. Xue, P. Chen, Q. Hong, J. Lin and K. Tan, Journal of Materials Chemistry 2001, 11, 2378-2381.
    [7] A. Manna, T. Imae, M. Iida and N. Hisamatsu, Langmuir 2001, 17, 6000-6004.
    [8] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. Khan, R. Kumar and M. Sastry, Colloids and Surfaces B: Biointerfaces 2003, 28, 313-318.
    [9] M. Andersson, V. Alfredsson, P. Kjellin and A. Palmqvist, Nano Letters 2002, 2, 1403-1407.
    [10] I. Lisiecki and M. Pileni, Langmuir 2003, 19, 9486-9489.
    [11] A. Taleb, C. Petit and M. Pileni, Chem. Mater 1997, 9, 950-959.
    [12] a) V. Liveri, Controlled synthesis of nanoparticles in microheterogeneous systems, Springer Verlag, 2006, p; b) L. Liz-Marzan and P. Kamat, Nanoscale Materials 2004, 1-3; c) B. Cushing, V. Kolesnichenko and C. O'Connor, Chem. Rev 2004, 104, 3893-3946.
    [13] a) Z. Schelly, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 209, 305-314; b) Z. Hu, A. Jonas, S. Varshney and J. Gohy, J. Am. Chem. Soc 2005, 127, 6526-6527; c) H. Shen and A. Eisenberg, Macromolecules 2000, 33, 2561-2572.
    [14] C. Petit, P. Lixon and M. Pileni, The Journal of Physical Chemistry 1993, 97, 12974-12983.
    [15] W. Wang, S. Efrima and O. Regev, Langmuir 1998, 14, 602-610.
    [16] R. Bright, M. Musick and M. Natan, Langmuir 1998, 14, 5695-5701.
    [17] L. Liz-Marzan and I. Lado-Tourino, Langmuir 1996, 12, 3585-3589.
    [18] P. Barnickel, A. Wokaun, W. Sager and H. Eicke, Journal of colloid and interface science 1992, 148, 80-90.
    [19] M. Andersson, J. Pedersen and A. Palmqvist, Langmuir 2005, 21, 11387-11396.
    [20] S. Harfenist, Z. Wang, M. Alvarez, I. Vezmar and R. Whetten, J. Phys. Chem 1996, 100, 13904-13910.
    [21] L. Han, J. Luo, N. Kariuki, M. Maye, V. Jones and C. Zhong, Chem. Mater 2003, 15, 29-37.
    [22] a) B. Yang, S. Kamiya, Y. Shimizu, N. Koshizaki and T. Shimizu, Chem. Mater 2004, 16, 2826-2831; b) B. Yang, S. Kamiya, K. Yoshida and T. Shimizu, Chemical communications 2004, 2004, 500-501.
    [23] V. Abetz and P. Simon, Block Copolymers I 2005, 125-212.
    [24] J. Chiu, B. Kim, E. Kramer and D. Pine, J. Am. Chem. Soc 2005, 127, 5036-5037.
    [25] a) L. Zhang and A. Eisenberg, Polymers for Advanced Technologies 1998, 9, 677-699; b) L. Zhang and A. Eisenberg, Macromolecules 1996, 29, 8805-8815.
    [26] T. K. Haifeng Yu, Molecules 2010, 15, 570-603.
    [27] D. Fanghanel, C. Timpe and V. Orthman, Organic photochromes 1990, 105.
    [28] G. Wang, X. Tong and Y. Zhao, Macromolecules 2004, 37, 8911-8917.
    [29] W. Su, Y. H. Luo, Q. Yan, S. Wu, K. Han, Q. J. Zhang, Y. Q. Gu and Y. M. Li, Macromolecular Rapid Communications 2007, 28, 1251-1256.
    [30] M. Szwarc, Carbanions, living polymers, and electron transfer processes, Interscience New York, 1968.
    [31] K. Matyjaszewski, Cationic polymerizations: mechanisms, synthesis, and applications, CRC, 1996.
    [32] M. Weck, J. Jackiw, R. Rossi, P. Weiss and R. Grubbs, J. Am. Chem. Soc 1999, 121, 4088-4089.
    [33] K. Matyjaszewski and J. Xia, Chem. Rev 2001, 101, 2921-2990.
    [34] N. Tsarevsky and K. Matyjaszewski, Chem. Rev 2007, 107, 2270-2299.
    [35] a) J. Wang, T. Grimaud and K. Matyjaszewski, Macromolecules 1997, 30, 6507-6512; b) D. Shipp, J. Wang and K. Matyjaszewski, Macromolecules 1998, 31, 8005-8008.
    [36] a) H. Ito and M. Ueda, Macromolecules 1988, 21, 1475-1482; b) C. Ramireddy, Z. Tuzar, K. Prochazka, S. Webber and P. Munk, Macromolecules 1992, 25, 2541-2545.
    [37] X. Zhang, J. Xia and K. Matyjaszewski, Macromolecules 2000, 33, 2340-2345.
    [38] a) A. Hedges, Chem. Rev 1998, 98, 2035-2044; b) G. Wenz, B. Han and A. Mueller, Chem. Rev 2006, 106, 782-817; c) J. Szejtli, Chem. Rev 1998, 98, 1743-1754.
    [39] H. Ritter and M. Tabatabai, Progress in polymer science 2002, 27, 1713-1720.
    [40] M. van den Boogaard, University Library Groningen, Netherlands 2003.
    [41] A. Harada, J. Li and M. Kamachi, 1993.
    [42] Y. Okumura, K. Ito, R. Hayakawa and T. Nishi, Langmuir 2000, 16, 10278-10280.
    [43] A. Harada, Acc. Chem. Res 2001, 34, 456-464.
    [44] J. Chung and S. Kwak, Langmuir 2010, 26, 2418-2423.
    [45] Y. Wang, N. Ma, Z. Wang and X. Zhang, Angewandte Chemie International Edition 2007, 46, 2823-2826.
    [46] a) D. Fattakhova-Rohlfing, M. Wark, T. Brezesinski, B. Smarsly and J. Rathousky, Advanced Functional Materials 2007, 17, 123-132; b) L. Liu, W. Ai, M. Li, S. Liu, C. Zhang, H. Yan, Z. Du and W. Wong, Chem. Mater 2007, 19, 1704-1711; c) F. Neville, M. Cahuzac, O. Konovalov, Y. Ishitsuka, K. Lee, I. Kuzmenko, G. Kale and D. Gidalevitz, Biophysical journal 2006, 90, 1275-1287; d) Y. Gauduel, H. Gelabert and F. Guilloud, J. Am. Chem. Soc 2000, 122, 5082-5091.
    [47] a) J. Schillemans, F. Flesch, W. Hennink and C. van Nostrum, Macromolecules 2006, 39, 5885-5890; b) C. Yoshina-Ishii, G. Miller, M. Kraft, E. Kool and S. Boxer, J. Am. Chem. Soc 2005, 127, 1356-1357.
    [48] K. Nam, B. Peelle, S. Lee and A. Belcher, Nano Letters 2004, 4, 23-27.
    [49] J. Wang and M. Jiang, J. Am. Chem. Soc 2006, 128, 3703-3708.
    [50] T. Balaban, R. Goddard, M. Linke-Schaetzel and J. Lehn, J. Am. Chem. Soc 2003, 125, 4233-4239.
    [51] F. Huang and H. Gibson, J. Am. Chem. Soc 2004, 126, 14738-14739.
    [52] a) S. El-Safty and T. Hanaoka, Chem. Mater 2004, 16, 384-400; b) G. Gowda, H. Chen, C. Khetrapal and R. Weiss, Chem. Mater 2004, 16, 2101-2106.
    [53] M. Meyre, O. Lambert, B. Desbat and C. Faure, Nanotechnology 2006, 17, 1193.
    [54] K. Luo, C. Walker and K. Edler, Advanced Materials 2007, 19, 1506-1509.
    [55] a) P. Gao, C. Zhan and M. Liu, Langmuir 2006, 22, 775-779; b) Q. Wang, H. Yu, L. Zhong, J. Liu, J. Sun and J. Shen, Chem. Mater 2006, 18, 1988-1994.
    [56] a) X. Liu and A. Kakkar, Nanotechnology 2008, 19, 245602; b) H. Jiang, K. Moon, J. Lu and C. Wong, Journal of Electronic Materials 2005, 34, 1432-1439.
    [57] D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng and L. Huang, Chem. Mater 2004, 16, 872-876.
    [58] M. Tian, J. Wang, J. Kurtz, T. Mallouk and M. Chan, Nano Letters 2003, 3, 919-923.
    [59] A. Govindaraj, B. Satishkumar, M. Nath and C. Rao, Chem. Mater 2000, 12, 202-205.
    [60] E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph, Nature 1998, 391, 775-778.
    [61] C. Murphy and N. Jana, Advanced Materials 2002, 14, 80-82.
    [62] J. Choi, G. Sauer, K. Nielsch, R. Wehrspohn and U. Gosele, Chem. Mater 2003, 15, 776-779.
    [63] N. Jana, L. Gearheart and C. Murphy, J. Phys. Chem. B 2001, 105, 4065-4067.
    [64] C. Chen, L. Wang, G. Jiang, Q. Yang, J. Wang, H. Yu, T. Chen, C. Wang and X. Chen, Nanotechnology 2006, 17, 466.
    [65] J. Zhang, Self-assembled nanostructures, Springer, 2003, p.
    [66] a) M. Pileni, L. Motte and C. Petit, Chemistry of Materials 1992, 4, 338-345; b) J. Henle, P. Simon, A. Frenzel, S. Scholz and S. Kaskel, Chem. Mater 2007, 19, 366-373; c) X. Zhang, Z. Zhang and S. Glotzer, Nanotechnology 2007, 18, 115706.
    [67] a) L. Lu and M. Berkowitz, J. Am. Chem. Soc 2004, 126, 10254-10255; b) R. Premachandran, S. Banerjee, V. John, G. McPherson, J. Akkara and D. Kaplan, Chem. Mater 1997, 9, 1342-1347.
    [68] A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia and P. Yang, Nano Letters 2003, 3, 1229-1233.
    [69] T. Jensen, L. Kelly, A. Lazarides and G. Schatz, Journal of Cluster Science 1999, 10, 295-317.
    [70] a) J. Gao, D. Lee, Y. Yang, S. Holdcroft and B. Frisken, Macromolecules 2005, 38, 5854-5856; b) C. Garcia, Y. Zhang, S. Mahajan, F. DiSalvo and U. Wiesner, J. Am. Chem. Soc 2003, 125, 13310-13311; c) X. Li, J. Qian and S. He, Nanotechnology 2008, 19, 355501; d) J. Ye, C. Chen, W. Roy, P. Dorpe, G. Maes and G. Borghs, Nanotechnology 2008, 19, 325702.
    [71] a) J. Jung, S. Shinkai and T. Shimizu, Chem. Mater 2003, 15, 2141-2145; b) C. Zhan, J. Wang, J. Yuan, H. Gong, Y. Liu and M. Liu, Langmuir 2003, 19, 9440-9445.
    [72] Y. Zhou, Q. Ji, M. Masuda, S. Kamiya and T. Shimizu, Chem. Mater 2006, 18, 403-406.
    [73] a) J. Hodgkiss, N. Damrauer, S. Presse, J. Rosenthal and D. Nocera, J. Phys. Chem. B 2006, 110, 18853-18858; b) Y. Liu, C. You, H. Zhang, S. Kang, C. Zhu and C. Wang, Nano Letters 2001, 1, 613-616; c) T. Karino, Y. Okumura, C. Zhao, T. Kataoka, K. Ito and M. Shibayama, Macromolecules 2005, 38, 6161-6167; d) T. Sanji, N. Kato and M. Tanaka, Macromolecules 2006, 39, 7508-7512.
    [74] a) M. Alvarez-Perez, S. Goldup, D. Leigh and A. Slawin, J. Am. Chem. Soc 2008, 130, 1836-1838; b) S. Brovelli, G. Latini, M. Frampton, S. McDonnell, F. Oddy, O. Fenwick, H. Anderson and F. Cacialli, Nano Lett 2008, 8, 4546-4551.
    [75] a) S. Amajjahe and H. Ritter, Macromolecules 2008, 41, 3250-3253; b) K. Akiyoshi, A. Ueminami, S. Kurumada and Y. Nomura, Macromolecules 2000, 33, 6752-6756; c) J. Mascetti, S. Castano, D. Cavagnat and B. Desbat, Langmuir 2008, 24, 9616-9622; d) F. van de Manakker, M. van der Pot, T. Vermonden, C. van Nostrum and W. Hennink, Macromolecules 2008, 41, 1766-1773.
    [76] a) T. Loftsson, K. Matthiasson and M. Masson, International journal of pharmaceutics 2003, 262, 101-107; b) S. Kazarian and K. Chan, Macromolecules 2003, 36, 9866-9872.
    [77] a) C. Raj and R. Ramaraj, Photochem. Photobiol. A: Chem 1999, 122, 39¡V46; b) Y. Liu, P. Liang, Y. Chen, Y. Zhang, J. Zheng and H. Yue, Macromolecules 2005, 38, 9095-9099.
    [78] a) R. Johnson, T. Yamazaki, A. Kovalenko and H. Fenniri, J. Am. Chem. Soc 2007, 129, 5735-5743; b) A. Harada, Metal Complex Catalysts Supercritical Fluid Polymerization Supramolecular Architecture 1997, 141-191; c) D. Caskey, T. Yamamoto, C. Addicott, R. Shoemaker, J. Vacek, A. Hawkridge, D. Muddiman, G. Kottas, J. Michl and P. Stang, J. Am. Chem. Soc 2008, 130, 7620-7628; d) S. Xiao, X. Lu, Q. Lu and B. Su, Macromolecules 2008, 41, 3884-3892.
    [79] a) R. Rai, A. Saxena, A. Ohira and M. Fujiki, Langmuir 2005, 21, 3957-3962; b) A. Wu, X. Shen and Y. He, Journal of colloid and interface science 2006, 302, 87-94.
    [80] J. Liu, H. Hung and A. Harada, Langmuir 2008, 24, 7442-7449.
    [81] a) K. Nagai, K. Sakajiri, K. Maeda, K. Okoshi, T. Sato and E. Yashima, Macromolecules 2006, 39, 5371-5380; b) H. Goto, Macromolecules 2007, 40, 1377-1385; c) B. Senyuk, I. Smalyukh and O. Lavrentovich, Optics letters 2005, 30, 349-351; d) J. Hwang, N. Ha, H. Chang, B. Park and J. Wu, Optics letters 2004, 29, 2644-2646.
    [82] K. Okoshi, K. Nagai, T. Kajitani, S. Sakurai and E. Yashima, Macromolecules 2008, 41, 7752-7754.
    [83] a) A. Nielsen, M. Andersen, T. Bugge, C. Nielsen, T. Nielsen, R. Wimmer, D. Yu and K. Larsen, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 6619-6629; b) J. Xue, Z. Jia, X. Jiang, Y. Wang, L. Chen, L. Zhou, P. He, X. Zhu and D. Yan, Macromolecules 2006, 39, 8905-8907; c) S. Choi and K. Geckeler, Polymer 2007, 48, 1445-1449; d) M. Gotsev, P. Ivanov and C. Jaime, Chirality 2007, 19, 203-213.
    [84] a) Y. Ohya, S. Takamido, K. Nagahama, T. Ouchi, T. Ooya, R. Katoono and N. Yui, Macromolecules 2007, 40, 6441-6444; b) T. Uyar, C. Rusa, M. Hunt, E. Aslan, J. Hacaloglu and A. Tonelli, Polymer 2005, 46, 4762-4775; c) S. Satav, R. Karmalkar, M. Kulkarni, N. Mulpuri and G. Sastry, Macromolecules 2007, 40, 1824-1830; d) G. Wenz, I. Krauter and E. Sackmann, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 6223-6230.
    [85] a) W. Yuan and J. Ren, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 2754-2762; b) E. Gamsiz, L. Miller, A. Thombre, I. Ahmed and R. Carrier, Biotechnology and bioengineering 2010, 105, 409-420.
    [86] a) G. Yang, H. Wang, W. Yang, D. Gao and C. Zhan, J. Phys. Chem. B 2006, 110, 7044-7048; b) Y. Liu, L. Yu, Y. Chen, Y. Zhao and H. Yang, J. Am. Chem. Soc 2007, 129, 10656-10657; c) C. Yang, X. Wang, H. Li, S. Goh and J. Li, Biomacromolecules 2007, 8, 3365-3374; d) T. Ikeda, E. Hirota, T. Ooya and N. Yui, Langmuir 2001, 17, 234-238.
    [87] a) G. Yu, P. He, L. Shao and P. He, Environ. Sci. Technol 2008, 42, 7944-7949; b) T. Rudd, R. Nichols and E. Yates, J. Am. Chem. Soc 2008, 130, 2138-2139.
    [88] a) L. Zhao, B. Northrop and P. Stang, J. Am. Chem. Soc 2008, 130, 11886-11888; b) J. Sessler, J. Jayawickramarajah, M. Sathiosatham, C. Sherman and J. Brodbelt, Org. Lett 2003, 5, 2627-2630; c) M. FERNANDEZ-ALONSO, Journal of the American Chemical Society 2005, 127, 7379-7386; d) J. Lutz, A. Thunemann and K. Rurack, Macromolecules 2005, 38, 8124-8126.
    [89] a) V. Percec, M. Holerca, S. Magonov, D. Yeardley, G. Ungar, H. Duan and S. Hudson, Biomacromolecules 2001, 2, 706-728; b) J. Ruokolainen, H. Eerikainen, M. Torkkeli, R. Serimaa, M. Jussila and O. Ikkala, Macromolecules 2000, 33, 9272-9276; c) S. Kim, D. Jung, Y. Kim, M. Kang and H. Jung, Macromolecules 2006, 39, 6186-6190.
    [90] U. Caruso, B. Panunzi, A. Roviello and A. Sirigu, Macromolecules 1994, 27, 3513-3519.
    [91] S. Valkama, T. Ruotsalainen, A. Nykanen, A. Laiho, H. Kosonen, G. Ten Brinke, O. Ikkala and J. Ruokolainen, Macromolecules 2006, 39, 9327-9336.
    [92] S. Haraguchi, T. Hasegawa, M. Numata, M. Fujiki, K. Uezu, K. Sakurai and S. Shinkai, Org. Lett 2005, 7, 5605-5608.
    [93] J. Liu, Y. Chiu and T. Chiu, Macromolecules 2009, 42, 3715-3720.
    [94] J. Lin, G. Zhu, X. Zhu, S. Lin, T. Nose and W. Ding, Polymer 2008, 49, 1132-1136.
    [95] a) I. Tomatsu, A. Hashidzume and A. Harada, Macromolecules 2005, 38, 5223-5227; b) Z. Li, B. Li, Z. Liu, M. Wang, Z. Gu, G. Du, J. Wu and J. Chen, J. Agric. Food Chem 2009, 57, 6231-6237; c) M. Davis, Molecular Pharmaceutics 2009, 6, 659-668.
    [96] a) S. Loethen, T. Ooya, H. Choi, N. Yui and D. Thompson, Biomacromolecules 2006, 7, 2501-2506; b) S. Chelli, M. Majdoub, S. Aeiyach and M. Jouini, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 4391-4399; c) K. Kato, K. Inoue, M. Kidowaki and K. Ito, Macromolecules 2009, 42, 7129-7136.
    [97] a) D. Taura, A. Hashidzume, Y. Okumura and A. Harada, Macromolecules 2008, 41, 3640-3645; b) J. Chen, M. Dyer and M. Yu, J. Am. Chem. Soc 2001, 123, 6201-6202.
    [98] a) C. Yang, T. Mori, Y. Origane, Y. Ko, N. Selvapalam, K. Kim and Y. Inoue, J. Am. Chem. Soc 2008, 130, 8574-8575; b) S. Maniam, M. Cieslinski, S. Lincoln, H. Onagi, P. Steel, A. Willis and C. Easton, Org. Lett 2008, 10, 1885-1888.
    [99] K. Rurack, J. Bricks, B. Schulz, M. Maus, G. Reck and U. Resch-Genger, J. Phys. Chem. A 2000, 104, 6171-6188.
    [100] K. Kupcho, D. Stafslien, T. DeRosier, T. Hallis, M. Ozers and K. Vogel, J. Am. Chem. Soc 2007, 129, 13372-13373.
    [101] a) B. Ramachandram and A. Samanta, J. Phys. Chem. A 1998, 102, 10579-10587; b) U. Lee, J. Lee, M. Cho, K. Kim, Y. Kwon, J. Jin and D. Choi, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 5416-5425.
    [102] a) J. Lu, A. Hlil, Y. Sun, A. Hay, T. Maindron, J. Dodelet and M. D'Iorio, Chem. Mater 1999, 11, 2501-2507; b) J. Wang, R. Wang, J. Yang, Z. Zheng, M. Carducci, T. Cayou, N. Peyghambarian and G. Jabbour, J. Am. Chem. Soc 2001, 123, 6179-6180; c) D. Shin, J. Ahn, Y. Kim and S. Kwon, Journal of Polymer Science Part A: Polymer Chemistry 2000, 38, 3086-3091.
    [103] a) W. Sriprom, M. James, S. Perrier and C. Neto, Macromolecules 2009, 42, 3138-3146; b) D. Zhang, P. Hamilton, L. Jeff, S. Venkataraman, K. Wooley and N. Ravi, Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 2569-2575; c) P. Wu, G. Ren, C. Li, R. Mezzenga and S. Jenekhe, Macromolecules 2009, 42, 2317-2320; d) Y. Tu, X. Wan, D. Zhang, Q. Zhou and C. Wu, J. Am. Chem. Soc 2000, 122, 10201-10205.
    [104] a) Y. Morikawa, T. Kondo, S. Nagano and T. Seki, Chem. Mater 2007, 19, 1540-1542; b) T. Bucholz and Y. Loo, Macromolecules 2008, 41, 4069-4070.
    [105] N. Scruggs, R. Verduzco, D. Uhrig, W. Khan, S. Park, J. Lal and J. Kornfield, Macromolecules 2009, 42, 299-307.
    [106] E. Tsang, Z. Zhang, Z. Shi, T. Soboleva and S. Holdcroft, J. Am. Chem. Soc 2007, 129, 15106-15107.
    [107] Y. Yu, C. Ouyang, Y. Gao, Z. Si, W. Chen, Z. Wang and G. Xue, Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 6105-6115.
    [108] M. McHenry and D. Laughlin, Acta materialia 2000, 48, 223-238.
    [109] H. Yu, T. Iyoda and T. Ikeda, J. Am. Chem. Soc 2006, 128, 11010-11011.
    [110] H. Hafiz and F. Nakanishi, Nanotechnology 2003, 14, 649.
    [111] S. Jing, L. Yong-Gang, M. Ji and X. Li, Chinese Physics Letters 2006, 23, 3285.
    [112] a) Y. Zhao, B. Qi and X. Tong, Macromolecules 2008, 41, 3823-3831; b) L. Ding, H. Mao, J. Xu, J. He, X. Ding, T. Russell, D. Robello and M. Mis, Macromolecules 2008, 41, 1897-1900.
    [113] X. Tong and Y. Zhao, J. Am. Chem. Soc 2007, 129, 6372-6373.
    [114] Q. Zeng, Z. Li, C. Ye, J. Qin and B. Tang, Macromolecules 2007, 40, 5634-5637.
    [115] B. Liu, M. Wang, Y. He and X. Wang, Langmuir 2006, 22, 7405-7410.
    [116] K. Yager, O. Tanchak, C. Godbout, H. Fritzsche and C. Barrett, Macromolecules 2006, 39, 9311-9319.
    [117] a) Y. Li, Y. Deng, X. Tong and X. Wang, Macromolecules 2006, 39, 1108-1115; b) X. Tong, G. Wang, A. Soldera and Y. Zhao, J. Phys. Chem. B 2005, 109, 20281-20287.
    [118] W. Li and M. Coppens, Chem. Mater 2005, 17, 2241-2246.
    [119] Y. Deng, N. Li, Y. He and X. Wang, Macromolecules 2007, 40, 6669-6678.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE