| 研究生: |
劉浩宇 Liu, Hao-Yu |
|---|---|
| 論文名稱: |
定位量子強耦合單元於基板上 Positioning quantum strong coupling units on substrates |
| 指導教授: |
陳宣燁
Chen, Shiuan-Yeh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 量子元件 、表面電漿共振效應 、螢光分子 、DNA功能化 、電子束微影 、強耦合效應 、定位 |
| 外文關鍵詞: | DNA functionalization, positioning, strong coupling, fluorescent molecule, plasmonic cavity |
| 相關次數: | 點閱:46 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量子電腦基於其元件內粒子處於量子態時所攜帶的資訊單元,量子位元(q-bit),有著獨特的量子疊加(Quantum superposition)性質,使其相較於使用一般位元(bit)作為資訊處理單元的傳統電腦有著更強大的計算的能力,因此目前許多的公司及學術單位都在致力於量子元件的開發。但要製作出能產生多個量子位元的量子元件供於實際應用並不容易,這是由於要穩定控制具有量子態的粒子(如光子或電子)本身就是一件極其困難的事情,以致於元件往往需要附加其它能使這些粒子穩定的系統,使得整個元件體積過於龐大而不利於應用。而隨著近年來金屬奈米材料獨特的表面電漿共振效應的廣泛研究,發現當一個分子等級的物質,如螢光分子接近由金屬奈米粒子所組成的共振腔內的強場區域時,兩者會產生量子強耦合的現象,使得螢光分子被激發後由自發性輻射所放出的光子能夠再回到共振腔內部,且回到共振腔內的光子會再一次激發螢光分子,之後重複這個程序數次,使得光子這個帶有量子態的粒子能夠穩定的在室溫環境下存在於奈米尺度的結構中一段時間,使其未來有機會成為量子元件應用的系統。本研究主要結合金粒表面的化學修飾以及電子束微影,使帶有螢光分子的金粒子能夠準確的定位在直徑最小為70 nm奈米孔洞內部的金膜表面上,並依照DNA使用的段數及濃度的不同分為兩個製程,在製程1下定位成功率可來到最好的1.72 %,而於更大直徑的孔洞內部如100 nm及250 nm,成功率則分別可來到2.91 %及23.19 %。並於這些定位粒子的散射光譜量測上,分別發現有10 %、10 %、25 %的粒子觀察到有強耦合現象的產生(散射光譜上觀察到峰值分裂的現象)。如果是在製程2下,70 nm、100 nm、250 nm孔洞定位成功率依序可來到4.43 %、10.58 %、55.77 %,而觀察到強耦合現象的比率依序為20 %、5 %、5 %。於製程1或製程2下量測到粒子有產生光譜分裂的現象,都已說明實驗上已成功製作出能定位於基板上的金屬奈米電漿子共振腔與螢光分子的強耦合結構。此外也有在模擬上利用有限元素分析法計算出接近實驗上量測到強耦合結構的散射光譜譜型及峰值位置。
With the extensive research on the localized surface plasmons resonance of nanoparticles in recent years, it has been found that when a fluorescent molecule is close to the strong field region in the plasmonic cavity, the strong coupling effect will occur. The photon emitted by the spontaneous emission of fluorescent molecule can return to the plasmonic cavity, and once again excite the fluorescent molecule. It gives such a structure (a plasmonic cavity with a fluorescent molecule) a potential to be used as a quantum device for applications in the future.
This thesis mainly combines the DNA functionalization of the surface of gold nanoparticles and electron beam lithography, so that the gold nanoparticles with fluorescent molecules can be accurately positioned on the surface of the gold film inside the nanoholes with a minimum diameter of 70 nm. In manufacturing process 1, the positioning yield can reach 1.72 %, and for nanoholes of larger diameter such as 100 nm and 250 nm can reach 2.91 % and 23.19 % respectively. By measuring scattering spectrum of these positioned nanoparticles, they were found that 10 %, 10 %, and 25 % of these particles have strong coupling (peak splitting was observed). In manufacturing process 2, the positioning yield of 70 nm, 100 nm, 250 nm nanoholes can reach 4.43%, 10.58%, and 55.77%, respectively, and was found that 20%, 5 %, 5 %. of these particles having strong coupling. The splitting of spectrum of these positioning particles show that we have experimentally produced positioned quantum strong coupling units composed of fluorescent molecules and plasmonic cavity on substrates.
[1]: Amendola, Vincenzo, et al. "Surface plasmon resonance in gold nanoparticles: a review." Journal of Physics: Condensed Matter 29.20 (2017): 203002.
[2]: Chikkaraddy, Rohit, et al. "Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami." Nano letters 18.1 (2018): 405-411.
[3]: Moskovits, Martin. "Surface-enhanced spectroscopy." Reviews of modern physics 57.3 (1985): 783.
[4]: Berini, Pierre, and Israel De Leon. "Surface plasmon–polariton amplifiers and lasers." Nature photonics 6.1 (2012): 16-24.
[5]: Lounis, Brahim, and Michel Orrit. "Single-photon sources." Reports on Progress in Physics 68.5 (2005): 1129.
[6]: Stete, Felix, et al. "Size-Dependent Coupling of Hybrid Core–Shell Nanorods: Toward Single-Emitter Strong-Coupling." The Journal of Physical Chemistry C 122.31 (2018): 17976-17982.
[7]: Kaluzny, Y., et al. "Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance." Physical review letters 51.13 (1983): 1175.
[8]: Yoshie, Tomoyuki, et al. "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity." Nature 432.7014 (2004): 200-203.
[9]: Chen, Xingxing, et al. "Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons." Nano Letters 17.5 (2017): 3246-3251.
[10]: Schlather, Andrea E., et al. "Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers." Nano letters 13.7 (2013): 3281-3286.
[11]: Chikkaraddy, Rohit, et al. "Single-molecule strong coupling at room temperature in plasmonic nanocavities." Nature 535.7610 (2016): 127-130.
[12]: Lin, Qing-Yuan, et al. "Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays." Nano letters 15.7 (2015): 4699-4703.
[13]: Li, Jie, et al. "Dual strong couplings between TPPS J-aggregates and aluminum plasmonic states." The journal of physical chemistry letters 7.14 (2016): 2786-2791.
[14]: E. M. Purcell "Spontaneous emission probabilities at radio frequencies" Phys. Rev. 69, 681 (1946)
[15]: Dovzhenko, D. S., et al. "Light–matter interaction in the strong coupling regime: configurations, conditions, and applications." Nanoscale 10.8 (2018): 3589-3605.
[16]: Sánchez Huertas, César, and Antoni Villaverde. Nanophotonic biosensors for deciphering cell regulation pathways. Universitat Autònoma de Barcelona,, 2016.
[17]: Elhadj, Selim, Gaurav Singh, and Ravi F. Saraf. "Optical properties of an immobilized DNA monolayer from 255 to 700 nm." Langmuir 20.13 (2004): 5539-5543.
[18]: Johnson, Peter B., and R-WJPrB Christy. "Optical constants of the noble metals." Physical review B 6.12 (1972): 4370.
[19]: Turro, Nicholas J., et al. Principles of molecular photochemistry: an introduction. University science books, 2009.
[20]: Cannon, Brittany L., et al. "Coherent exciton delocalization in a two-state DNA-templated dye aggregate system." The Journal of Physical Chemistry A 121.37 (2017): 6905-6916.
[21]:Mark Fox.(2010). Optical Properties of Solids,Oxford University Press.
[22]: Sharma, Surender Kumar, et al., eds. Handbook of Materials Characterization. New York, NY, USA:: Springer International Publishing, 2018.
[23]: 盧宥任,謝余松,張益三,"橢圓偏光術於ITO透明導電膜量測應用(上)",光連雙月刊,2012/03,98期
[24]: 盧宥任,謝余松,張益三,"橢圓偏光術於ITO透明導電膜量測應用(下)",光連雙月刊,2012/05,99期
[25]: Turro, Nicholas J., et al. Principles of molecular photochemistry: an introduction. University science books, 2009.
[26]: Zheng Cui. " Nanofabrication Principles, Capabilities and Limits (Second Edition)." .Springer ,2017.
[27]:Abramowitz,M. & Davidson,M.W. Reflected Darkfield Illumination,http://www.olympusmicro.com/primer/techniques/darkfieldreflect.html(2012).
[28]: Murphy, Douglas B. Fundamentals of light microscopy and electronic imaging. John Wiley & Sons, 2002.
[29]:陳浚弘, "螢光分子與單一奈米共振腔的量子強耦合逼近",碩士論文,成功大學光電科學與工程學研究所,2019
[30]: Lassiter, J. Britt, et al. "Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability." Nano letters 10.8 (2010): 3184-3189.
[31]: https://refractiveindex.info/?shelf=main&book=Au&page=Johnson
[32]: McKeever, J., et al. "Deterministic generation of single photons from one atom trapped in a cavity." Science 303.5666 (2004): 1992-1994.
[33]: Rohlf, J. W. "Wiley: Modern Physics from alpha to Z0" (1994).
[34]: Groß, Heiko, et al. "Near-field strong coupling of single quantum dots." Science Advances 4.3 (2018): eaar4906.
[35]: Santhosh, Kotni, et al. "Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit." Nature communications 7.1 (2016): 1-5
校內:2023-11-30公開