簡易檢索 / 詳目顯示

研究生: 許智超
Hsu, Chih-Chao
論文名稱: 奈米碳網轉印技術於應變感測與撓性場效電晶體之研究
Study on carbon nanonets applications in strain sensors and flexible FETS by nano-transfer printing method
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 156
中文關鍵詞: 單壁奈米碳網奈米轉印應變感測器聚對二甲苯撓性場效電晶體薄膜電晶體
外文關鍵詞: nano-transfer printing, strain sensor, Parylene-C, flexible field effect transistor, thin film transistor
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究提出一個可於撓性基板上以單壁奈米碳網製作應變感測器與撓性場效電晶體的奈米轉印(Nano-transfer Printing)製程技術,亦稱為高分子膠帶黏著(Polymer Tape Bonding)法,這項技術利用酒精催化化學氣相沉積法(ACCVD)成長單壁奈米碳網於矽基板上,經由黃光微影蝕刻來定義單壁奈米碳網圖型,蒸鍍聚對二甲苯(Parylene-C)高分子薄膜將單壁奈米碳網固定,再將單壁奈米碳網以高分子膠帶黏著法轉印至撓性基板上,得以製作出具有撓曲特性之應變感測器與撓性場效電晶體;全部製程利用現有積體電路製程來完成。文中針對於單壁奈米碳網薄膜在疏密不同對其阻規係數(Gauge Factor)影響以拉伸實驗作驗證,並討論其差異,依目前的研究結果獲得從1.46~8.22不等的阻規係數;而且在研究中也發現奈米碳網元件在寬度縮小至40微米下,其阻規係數會對應增加。本研究所發展的奈米轉印製程技術與壓阻特性研究結果,未來將可應用於結構物安全監控用應變規與生醫用應變感測器等的製作與研發上。此外,本論文所提出的奈米轉印方法也用於製作單壁奈米碳網撓性場效電晶體,利用目前的積體電路製程技術於撓性基板(PEN and polyimide)上製作薄膜電晶體,關於單壁奈米碳網撓性場效電晶體的特性量測方面,則是利用電流-電壓量測(I-V measurement)的方式獲得,依目前研究結果獲得平均的載子遷移率(mobility)為53.89cm2/Vs,特性為P型場效電晶體,而整體的載子遷移率為30.10~ 96.85cm2/Vs不等,且電流開/關比接近100倍。

    Nano-transfer printing (nTP) is increasingly used for micro-fabrication of nano-scale materials onto flexible plastic substrates. This thesis reports a novel nTP process (called as “polymer tape bonding”) for single-walled carbon nanonets (SWCNNs) for use in strain sensors and flexible field effect transistors. Traditional SWCNNs grown on silicon substrate by alcohol catalytic chemical vapour deposition (ACCVD) can serve as strain sensing elements in strain sensors and nano electromechanical system (NEMS) sensors, but ACCVD is not well suited to the task. To improve SWCNN fabrication, this paper deposits a Parylene-C thin film on SWCNNs for transfer-printing onto flexible plastic substrates with polyimide tape. Quantification of the fabricated SWCNN strain sensing ability (gauge factor) is performed by comparing two specimens with different pattern features and substrates. Gauge factor is measured by tensile testing. SWCNN density variations relative to the observed gauge factors are discussed. Results show SWCNN gauge factors range from 1.46 to 8.22 depending on the substrate and pattern width. It is further observed that the gauge factor of the presented SWCNN thin film increases when the width of the SWCNN decreases to the low micro-dimensions, i.e. below 40m, indicating a significant scaling factor. Also, the presented nTP method is used to fabricate the SWCNN flexible top-gated field effect transistor on PEN and polyimide base with standard integrated circuit (IC) compatible processes. Finally, electric characteristics of the flexible SWCNN top-gate thin film transistors are measured by the I-V measurement, the SWCNN TFT achieved the averaged mobility of 53.89cm2/Vs with applied Vds=0.1V as a p-type FET, and the mobility is ranged from 30.10 to 96.85cm2/Vs. and the on-to-off ratio of the current devices is approximately 100.

    ABSTRACT.....I ABSTRACT IN CHINESE.....III ACKNOWLEDGEMENTS.....V ACKNOWLEDGEMENTS IN CHINESE.....VI CONTENTS.....VII LIST OF TABLES.....X LIST OF FIGURES.....XI NOMENCLATRUE.....XXIII CHAPTER I Introduction.....1 1.1 Basic Background of Carbon Nanotubes and Carbon Nanonets.....1 1.2 Growth methods of CNTs and CNNs.....9 1.2.1 The Typical Growth Methods.....9 1.2.2 Modified chemical vapor deposition method.....14 1.3 The developments of the flexible devices with Carbon nanonets.....17 1.3.1 Flexible electronics and flexible sensors with CNNs.....19 1.3.2 Solution-based method and nano-transfer print (nTP) for CNNs.....20 1.4 Carbon nanonets for strain sensing and flexible FETs.....24 1.4.1 Strain sensing with carbon nanotubes and carbon nanonets.....25 1.4.2 Carbon nanonets-based flexible FETs.....27 1.4.3 Summary.....28 1.5 Objectives.....29 CHAPTER II Growth and characterization of SWCNNs with ACCVD and Raman spectrum analysis.....31 2.1 Alcohol Catalytic Chemical Vapor Deposition (ACCVD).....31 2.2 Characterization of SWCNNs with Raman analysis.....34 2.2.1 Raman spectrum analysis for nano-material.....34 2.2.2 Raman spectrum analysis for CNTs.....37 2.2.3 Raman spectrum Analysis of SWCNNs Thin Film.....41 2.3 The density variations of SWCNNs for different growth time and position.....44 CHAPTER III Development of novel nTP process for SWCNN-based devices....45 3.1 Polymer tape bonding method.....45 3.2 Proposed applications with this nTP method.....52 CHAPTER IV Design, fabrication, and characterization of SWCNN strain sensors.....56 4.1 Design of the SWCNN strain sensors.....56 4.2 Fabrication Process.....59 4.3 Results of the fabrication.....66 4.4 Characterization of the flexible SWCNN strain sensors.....72 4.4.1 Strain sensing ability.....73 4.4.2 GF verses SWCNNs density and scale-down effects.....80 4.4.3 Thermal resistance effect and temperature coefficient of resistance (TCR).....82 4.4.4 Dynamic test.....84 4.5 Static characteristics analysis of the SWCNN strain sensors.....88 4.6 Summary.....91 CHAPTER V Design, fabrication, and characterization of flexible SWCNN top-gated FETs.....95 5.1 Design of the flexible SWCNN top-gate FETs.....95 5.2 Fabrication process.....98 5.2.1 Typical fabrication process of silicon-based top-gate SWCNN FETs.....98 5.2.2 Process of presented flexible SWCNN top-gate FETs.....104 5.3 Results of the fabrication.....112 5.4 Characterization of the flexible top-gated SWCNN FETs.....118 5.5 Summary.....142 CHAPTER VI Conclusions.....144 REFERENCES.....148 VITA.....154 PUBLICATION LIST.....155

    [1]Collins P G and Avouris P, 2000, “Nanotubes for electronics,” Science American, 283, pp. 38-45.
    [2]Ouyang M, Huang J L, Cheung C L, and Lieber C M, 2001, “Energy gaps in metallic single-walled carbon nanotubes,” Science, 292, pp. 702−705.
    [3]Iijima S, 1991, “Helical microtubules of graphitic carbon,” Nature, 354, pp. 56−58.
    [4]Iijima S and Ichihashi T, 1993, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, pp. 603-605.
    [5]Bethune D S, Kiang C H, de Vries M S, Gorman C, Savoy R, Vazquez J, and Beyers R, 1993, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, 363, pp. 605−607.
    [6]Hierold C, Jungen A, Stampfer C and Helbling T, 2007, “Nano electromechanical sensors based on carbon nanotubes,” Sens. Actuators A, 136, pp. 51-61.
    [7]Gruner G, 2007, “Nanonet electronics,” Scientific American, May, pp. 77–83.
    [8]Einarsson E, Edamura T, Murakami Y, Igarashi Y, and Maruyama S, 2004, “A growth mechanism for vertically aligned single-walled carbon nanotubes,” Therm. Sci. Eng., 12, pp. 77−78.
    [9]Snow E S, Novak J P, Campbell P M, and Park D, 2003, “Random networks of carbon nanotubes as an electronic material,” Appl. Phys. Lett., 82, pp. 2145-2147.
    [10]Snow E S, Novak J P, Lay M D, Houser E H, Perkins F K, and Campbell P M, 2004, “Carbon nanotube networks: Nanomaterial for macroelectronic applications,” J. Vac. Sci. Technol. B, 22, pp. 1990-1994.
    [11]Bradley K, Gabriel J C P, and Grüner G, 2003, “Flexible nanotube electronics,” Nano Lett., 3, pp. 1353-1355.
    [12]Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fisher J E, and Smalley, R E, 1996, “Crystalline ropes of metallic carbon nanotubes,” Science, 273, pp. 483−487.
    [13]Tibbetts G G, 1984, “Why are carbon filaments tubular?,” J. Cryst. Growth, 66, pp. 632−638.
    [14]Tibbetts G G, 1989, “Vapor-grown carbon fibers: status and prospects,” Carbon, 27, pp. 745−747.
    [15]Baker R T K, 1989, “Catalytic growth of carbon filaments,” Carbon, 27, pp. 315−323.
    [16]Maruyama S, Miyauchi Y, Murakami Y, and Chiashi S, 2003, “Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol,” New J. Phys., 5, 149.1−149.12.
    [17]Kohno M, Orii T, Hirasawa M, Seto T, Murakami Y, Chiashi S, Miyauchi Y, and Maruyama S, 2004, “Growth of single-walled carbon nanotubes from size-selected catalytic metal particles,” Appl. Phys. A, 79, pp.787−790.
    [18]Murakami Y, Chiashi S, Miyauchi Y, and Maruyama S, 2004, “Direct synthesis of single-walled carbon nanotubes on silicon and quartz-based system,” Jpn. J. Appl. Phys., 43, pp. 1221−1226.
    [19]Maruyama S, Murajami Y, Shibuta Y, Miyauchi Y, and Chiashi S, 2004, “Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations,” J. Nanosci Nanotechno., 4, pp. 360−367.
    [20]Shiau S H, Liu C W, Gau C and Dai B T, 2008, “Growth of single-walled carbon nanotubes thin film and its patterning as an n-type field-effect transistor device using integrated circuit compatible process,” Nanotechnology, 19, 105303.
    [21]Rogers J A and Nuzzo R G, 2005, “Recent progress in soft lithography,” Mater. Today, February, pp. 50-56.
    [22]Kumar A and Whitesides G M, 1993, “features of gold having micrometer to centmeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett., 63, pp. 2002-2004.
    [23]Loo Y L, Willett R L, Baldwin K W, and Rogers J A, 2002, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics,” Appl. Phys. Lett., 81, pp. 562-564.
    [24]Loo Y L, Lang D V, Rogers J A, and Hsu J W P, 2003, “Electrical contacts to molecular layers by nanotransfer printing,” Nano Lett., 3, pp. 913-917.
    [25]Zaumseil J, Meitl M A, Hsu J W P, Acharya B R, Baldwin K W, Loo Y L, and Rogers J A, 2003, “Three-dimensional and multilayer nanostructures formed by nanotransfer printing,” Nano Lett., 3, pp. 1223-1227.
    [26]Felmet K, Loo Y L, and Sun Y M, 2004, “Patterning conductive copper by nanotransfer printing,” Appl. Phys. Lett., 85, pp. 3316-3318.
    [27]Hur S H, Khang D Y, Kocabas C, and Rogers J A, 2004, “Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers,” Appl. Phys. Lett., 85, pp. 5730-5732.
    [28]Zhou Y, Hu L, and Grüner G, 2006, “A method of printing carbon nanotube thin films,” Appl. Phys. Lett., 88, 123109.
    [29]Lee B H, Sung M M, Kim S H, and Lee K D, 2007, “Patterning aluminium thin films by water-mediated nano-transfer printing,” J. Korean Phys. Soc., 51, S203-S206.
    [30]Kim T I, Kim J H, Son S J, and Seo S M, 2008, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology, 19, 295302.
    [31]Strobel S, Harrer S, Blanco G P, Scarpa G, Abstreiter G, Lugli P, and Tornow M, 2009, “Planar nanogap electrodes by direct nanotransfer printing,” Small, 5, pp. 579-582.
    [32]Hines D R, Mezhenny S, Breban M, Williams E D, Ballarotto V W, Esen G, Southard A, and Fuhrer M S, 2005, “Nanotransfer printing of organic and carbon nanotube thin film transistors on plastic substrates,” Appl. Phys. Lett., 86, 163101.
    [33]Meitl M A, Zhou Y, Gaur A, Jeon S, Usrey M L, Strano M S, and Rogers J A, 2004, “Solution casting and transfer printing single-walled carbon nanotube films,” Nano Lett., 4, pp. 1643-1647.
    [34]Hur S H, Park O O, and Rogers J A, 2005, “Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors,” Appl. Phys. Lett., 86, 243502.
    [35]Hur S H, Kocabas C, Gaur A, Park O O, Shim M, and Rogers J A, 2005, “Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks,” Appl. Phys. Lett., 98, 114302.
    [36]Liang X, Fu Z, and Chou S Y, 2007, “Graphene transistors fabricated via transfer-printing in device active-areas on large wafer,” Nano Lett., 7, pp. 3840-3844.
    [37]Oleksandrov S, Lee J, Lee S, Lee M G, Choi H Y, and Chung C H, 2009, “Fabrication of micro-and nano-scale gold patterns on glass by transfer printing,” J. Nanosci. Nanotechno., 9, pp. 748-7484.
    [38]Song L, Ci L, Gao W, and Ajayan P M, 2009, “Transfer printing of graphene using gold film,” ACS NANO, 3, pp. 1353-1356.
    [39]Tabata H, Shimizu M, and Ishibashi K, 2009, “Fabrication of single electron transistors using transfer-print aligned single walled carbon nanotubes arrays,” Appl. Phys. Lett., 95, 113107.
    [40]Ishikawa F N, Chang H K, Ryu K, Chen P C, Badmaev A, Gomez D A, Shen G, Zhou C, 2009, “Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates,” ACS NANO, 3, pp. 73-79.
    [41]Pint C L, Xu Y Q, Moghazy S, Cherukuri T, Alvarez N T, Haroz E H, Mahzooni S, Doorn S K, Kono J, Pasquali M, and Hauge R H, 2010, “Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment,” ACS NANO, 4, pp. 1131-1145.
    [42]Su C Y, Fu D, Lu A Y, Liu K K, Xu Y, Juang Z Y, and Li L J, 2011, “Transfer printing of graphen strip from the grapheme grown on copper wires,” Nanotechnology, 22, 185309.
    [43]Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson M E, and Zhou C, 2006, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett., 6, pp. 1880-1886.
    [44]Jung Y J, et al, 2006, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Lett., 6, pp. 413-418.
    [45]Lin C M, Lee Y T, Yeh S R, and Fang W L, 2009, “Flexible carbon nanotubes electrode for neural recording,” Biosens. Bioelectron., 24, pp. 2791-2797.
    [46]Selvarasah S, Makaram p, Chen C L, Xiong X, Chao S H, Busnaina A, Srindhar S, and Dokmeci M R, 2007, “A three dimensional multi-walled carbon nanotube based thermal sensor on a flexible parylene substrate,” Proc. of the 7th IEE Int. Conf. on Nanotechnology, Hong Kong, p 1062.
    [47]Artukovic E, Kaempgen M, Hecht D S Roth S, and Grüner G, 2005, “Transparent and flexible carbon nanotubes transistors,” Nano Lett., 5, pp. 757-760.
    [48]Parikh K, Cattanach K, Rao R, Suh D S, Wu A, and Manohar S K, 2006, “Flexible vapour sensors using single walled carbon nanotubes,” Sens, Actuators B, 113, pp. 55-63.
    [49]Robert M E, LeMieux M C, and Bao Z, 2009, “Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors,” ACS NANO, 3, pp. 3287-3293.
    [50]Takenobu T, Takahashi T, Kanbara T, Tsukagoshi K, Aoyagi Y , and Iwasa Y, 2006, “High-performance transparent flexible transistors using carbon nanotube film,” Appl. Phys. Lett., 88, 033511.
    [51]Kaempgen M, and Roth S, 2006, “Transparent and flexible carbon nanotube/polyaniline pH sensors,” J. Electroanal. Chem., 586, pp. 72-76.
    [52]Jung S, Ji T, Xie J, and Varadan V K, 2007, “Flexible strain sensors based on pentacene-carbon nanotube composite thin films,” Proc. of the 7th IEE Int. Conf. on Nanotechnology, Hong Kong, p 375.
    [53]Minot E D, Yaish Y, Sazonova V, Park J Y, Brink M, and McEuen P L, 2003, “Tuning carbon nanotube band gaps with strain,” Phys. Rev. Lett., 90, 156401.
    [54]Reale A, Regoliosi P, Tocca L, and Lugli P, 2004, “Evaluation of the gauge factor for membranes assembled by single-walled carbon nanotubes,” Appl. Phys. Lett., 85, pp. 2812-2814.
    [55]Grow R J, Wang Q, Cao J, Wang D, and Dai H, 2005, “Piezoresistance of carbon nanotubes on deformable thin-film membranes,” Appl. Phys. Lett., 86, 093104.
    [56]Fung C K M, Zhang M Q H, Chan R H M, and Li W J, 2005, “A PMMA-based micropressure sensor chip using carbon nanotubes as sensing elements,” Proc. MEMS pp. 251-254.
    [57]Stampfer C, Helbling T, Obergfell D ,Schoberle B, Tripp M K, Jungen A, Roth S, Bright V M, and Hierold C, 2006, “Fabrication of single-walled carbon-nanotube-based pressure sensors,” Nano Lett., 6, pp. 233-237.
    [58]Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, and Hierold C, 2006, “Nano-electromechanical displacement sensing based on single-walled carbon nanotubes,” Nano Lett., 6, pp. 1449-1453.
    [59]Stampfer C, Jungen A, and Hierold C, 2006, “Fabrication of discreat nanoscaled force sensors based on single-walled carbon nanotubes,” IEEE Sens. J., 6, pp. 613-617.
    [60]Tong J, and Sun Y, 2007, “Toward carbon nanotubes-based AFM cantilevers,” IEEE T. Nanotechnol., 6, pp. 519-523.
    [61]Dharap P, Li Z, Nagarajaiah S, and Barrera E V, 2004, “Nanotube film based on single-wall carbon nanotubes for strain sensing,” Nanotechnology, 15, pp. 379-382.
    [62]Li Z, Dharap P, Nagarajaiah S, Barrera E V, and Kim J D, 2004, “Carbon nanotube film sensor,” Adv. Mater., 16, pp. 640-643.
    [63]Kang I, Schulz M J, Kim J H, Shanov V, and Shi D, 2006, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct., 15, pp. 737-748.
    [64]Liu Y, Chakrabartty S, Gkinosatis D S, Mohanty A K, and Lajnef N, 2007, “Multi-walled carbon nanotubes/poly(l-lactide) nanocomposite strain sensor for biomechanical implants,” Biomechanical Circuits and Systems Conf., p 119.
    [65]Loh K J, Kim J, Lynch J P, Kam N W S, and Kotov N A, 2007, “Multifunctional layer-by-layer carbon nanontube-polyelectrolyte thin films for strain and corrosion sensing,” Smart Mater. Struct., 16, pp. 429-438.
    [66]Olek M, Ostrander J, Jurga S, Möhwald H, Kotov N, Kempa K, and Giersig M, 2004, “Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies,” Nano Lett., 4, pp. 1889-1895.
    [67]Sato M, and Sano M, 2005, “Van der Waals layer-by-layer construction of a carbon nanotube 2Dnetwork,” Langmuir, 21, pp. 11490-11494.
    [68]Tombler T W, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi C S, Tang M J, and Wu S Y, 2000, “Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, 405, pp. 769-772.
    [69]Pham G T, Park Y B, Liang, Zhang C, and Wang B, 2008, “Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing,” Composites: Part B, 39, pp. 209-216.
    [70]Chalmers G F, 1983, “Strain Gauge Technology” 3ed A L Window (Elsevier Applied Science) p 34.
    [71]Behnam A, Noriega L, Choi Y, Wu Z, Rinzler A G, and Ural A, 2006, “Resistivity scaling in single-walled carbon nanotube films patterned to submicron dimensions,” Appl. Phys. Lett., 89, 093107.
    [72]Dresselhaus M S, Jorio A, Dresselhaus G, Saito R, Filho A G S, and Pimenta M A, 2002, “Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube,” Mol. Cryst. Liq. Cryst., 387, pp. 245-253.
    [73]Costa S, Borowiak-Palen E, Kruszynska M, Bachmatiuk A, and Kaleńczuk R J, 2008, “Characterization of carbon nanotubes by Raman spectroscopy,” Mater. Sci.-Poland, 26, pp. 433-441.
    [74]Dresselhaus M S, Dresselhaus G, Jorio A, Filho A G S, and Saito R, 2002, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon, 40, pp. 2043-2061.
    [75]Alpuim P, Filonovich S A, Costa C M, Rocha P F, Vasilevskiy M I, Lanceros-Mendez S, Frias C, Marques A T, Soares R, and Costa C, 2008, “Fabrication of a strain sensor for bone implant failure detection based on piezoresistive doped nanocrystalline silicon,” J. Non-Cryst. Solids, 354, pp. 2585-2589.
    [76]Chalmers G F, 1983, “Strain Gauge Technology” 3ed A L Window (Elsevier Applied Science) p 12.
    [77]Kuo C Y, Chan C L, Gau C, Liu C W, Shiau S H, and Ting J H, 2007, “Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes,” IEEE T. Nanotechnol., 6, pp. 63-69.
    [78]Cheng P S, 2010, “Fabrication and measurement characteristics of single-walled carbon nanotubes field-effect transistors,” Dissertation for Master, Institute of Areonautics and Astronautics, National Cheng Kung University.
    [79]Martel R, Derycke V, Lavoie C, Appenzeller J, Chen K, Tersoff J, and Avouris P, 2001, “Ambipolar electrical transport in semicducting single-wall carbon nanotubes,” Phys. Rev. Lett., 87, 256805.
    [80]Ziegler D, Suzuki T, and Takeuchi S, 2006, “Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene,” J. Microelectromech. S., 15, pp.1477-1482.
    [81]Yang G Y, Johnson G, Tang W C, and Keyak J H, 2007, “Parylene-based strain sensors for bone,” IEEE Sens. J, 7, pp. 1693-1697.
    [82]Chen C L, Lopez E, Jung Y J, Müftü S Selvarasah S, and Dokmeci M R, 2008, “Mechanical and electrical evaluation of Parylene-C encapsulated carbon nanotube networks on a flexible substrate,” Appl. Phys. Lett., 93, 093109.

    下載圖示 校內:2014-04-19公開
    校外:2014-06-30公開
    QR CODE