| 研究生: |
阮氏犛犛 Ly, Nguyen Thi Ly |
|---|---|
| 論文名稱: |
銫原子中階梯型電磁誘導透明之極化效應的理論模擬 Theoretical Simulation of Polarization Effect on a Ladder-type Electromagnetically Induced Transparency in Cesium Atoms |
| 指導教授: |
蔡錦俊
Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 外文關鍵詞: | Electromagnetically induced transparency, optical pumping, optical Bloch equation |
| 相關次數: | 點閱:82 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Electromagnetically induced transparency (EIT) is a quantum interference effect that allows light to propagate by creating a transparency window at the resonance of atoms that are usually highly absorbed. This thesis theoretically simulates the polarization and temperature dependence of the EIT spectrum of Cesium atoms on the ladder-type 6S_(1/2)-6P_(3/2)-11S_(1/2) transition. The optical Bloch-equation for the system is constructed and solved to obtain the steady-state solution of the matrix elements, which contains the coherence information between the atom and the external optical fields. The absorption coefficient can be derived from the imaginary part of susceptibility for this system. In order to study the polarization effect in the EIT system, three different polarization combinations of probe and coupling fields were applied, namely σ^+-σ^-, σ^+-π, and σ^+-σ^+.The results show that when the polarization of the two fields is changed (varied), the allowed two photon-transition paths and the reshaped population distribution of Zeeman-sublevels are the key effects of changing the EIT signal. Therefore, the EIT peak can be enhanced or reduced under different polarization combinations. The influence of temperature on the EIT signal is investigated by changing the Maxwell population distribution of the system. The temperature ranges from ultra-cold (1mK, such as the temperature in a magneto optical trap) to room temperature (300K). At ultra-cold temperature, the average speed of atoms is around 0 m/s, and the non-optical energy transform process (mainly is collision) is negligible, so the optical pumping efficiency is very high. However, at room temperature, the average speed of atoms is much larger (193.36 m/s), and the impact of collisions is great, so the optical pumping rate is very low. We found that the linewidth of the EIT signal at room temperature is narrower than the linewidth at ultra-cold temperature, while the line shape at high temperature contains additional absorption wings on both sides of the EIT signal. This is the phenomena of quantum interference. The unusual peak signal when changing polarization and temperature will provide some ideas for future experiments and applications in other fields.
1. K. J. Boller, A. Imamoglu, and S. E. Harris, Observation of Electromagnetically Induced Transparency. Phy. Rev. Lett., 1991. 66(20): p. 2593-2596.
2. J. E. Field, K. H. Hahn, and S. E. Harris, Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor. Phy. Rev. Lett., 1991. 67(22): p. 3062-3065.
3. D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically induced transparency. Phys. Rev. A, 2000. 62(5): p. 053802.
4. Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type electromagnetically induced transparency with optical pumping effect. Phys. Rev. A, 2013. 87(3): p. 033402
5. Shepherd, S., D. J. Fulton, and M. H. Dunn, Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium. Phys. Rev. A, 1996. 54(6): p. 5394-5399.
6. Moon, H. S., L. Lee, and L. B. Kim, Double-resonance optical pumping of Rb atoms. J. Opt. Soc. Am. B, 2007. 24(9): p. 2157-2164.
7. Moon, H. S. and H. R. Noh, Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S(1/2)-5P(3/2)-5D(5/2) transition of Rb-87 atoms. Phys. Rev. A, 2011. 84(3): p. 033821.
8. Sakurai, J. J. and J. Napolitano, Modern Quantum Mechanics. 2 ed. 2017, Cambridge: Cambridge University Press.
9. Geabanacloche, J., Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically Induced Transparency in Ladder-Type Inhomogeneously Broadened Media - Theory and Experiment. Phys. Rev. A, 1995. 51(1): p. 576-584.
10. Foot, C. J., Atomic physics. 2005: Oxford University Press.
11. Farrell, P. M. and W. R. Macgillivray, On the Consistency of Rabi Frequency Calculations. J. Phys. A. Math. Gen., 1995. 28(1): p. 209-221.
12. Krainskamiszczak, M., Alignment and Orientation by Optical-Pumping with Pi-Polarized Light. J. Phys. B. At. Mol. Opt., 1979. 12(4): p. 555-566.
13. DiBerardino, D., C. E. Tanner, and A. Sieradzan, Lifetime measurements of cesium 5d(2)D(5/2,3/2) and 11s(2)S(1/2) states using pulsed-laser excitation. Phys. Rev. A, 1998. 57(6): p. 4204-4211.
14. Yang, B. D., J. Gao, T. C. Zhang, and J. M. Wang, Electromagnetically induced transparency without a Doppler background in a multilevel ladder-type cesium atomic system. Phys. Rev. A, 2011. 83(1): p. 013818.