簡易檢索 / 詳目顯示

研究生: 戴正虢
Tai, Jean-Kuo
論文名稱: 正方鎢青銅結構鈮酸鹽晶體生長、晶體結構及磁電性質研究
Crystal Structure, electrical and magnetic characterization of TTB structured niobate single crystals
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 正方鎢青銅結構複鐵材料單晶
外文關鍵詞: Tetragonal Tungsten Bronze, Multiferroic, Single crystal
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正方鎢青銅礦結構(Tetragonal Tungsten Bronze, TTB)的铌酸盐通常具有鐵電性,且此結構存在有三種不同的间隙位置可供攙雜。本研究之目的是將磁性離子加入TTB結構的铌酸盐中,使其同時具有鐵電性及鐵磁性,藉此發掘新穎的複鐵式材料。
    TTB結構的铌酸盐成份較為複雜,固相燒結所得樣品中常含有雜相,給量測帶來不確定性,故本研究以液相自發成核的方式成長單晶樣品。已成功成長的單晶有Ba4La2Fe2Nb8O30、Ba6CoNb9O30、Ba6MnNb9O30、K2Nb4O11、Ba6Fe0.90Nb9.10O30及K4Fe1.56Nb6.44O21.4等。由於時間有限,本研究僅對其中的兩種晶體,即Ba6Fe0.90Nb9.10O30和K4Fe1.56Nb6.44O21.4的結構以及磁電性質進行了研究。
    單晶X-ray繞射結果顯示,Ba6Fe0.90Nb9.10O30 具有正方晶系,空間群為P4/mbm,Fe取代Nb而非進入間隙位置。磁性測量顯示其可能呈現亞鐵磁性,且相轉變溫度在10 K以下。從結構分析以及介電系數隨溫度的變化推測,其可能具有鐵電特性,且相變化溫度大約在室溫附近。
    單晶X-ray繞射結果顯示,K4Fe1.56Nb6.44O21.4並不屬於TTB結構,其空間群為Pnma。磁性測量顯示其亦可能在10 K以下呈現亞鐵磁性。此單晶在室溫下可測得電滯曲線,但明顯含有漏電流。由電滯曲線得出的剩餘極化量為9.25μC/cm2,矯頑電場為10.73kV/cm。

    Tetragonal-tungsten-bronze (TTB) structured niobates usually exhibit ferroelectric properties. In the TTB crystal structure, there are three types of interstitial vacancies that may be used for doping various ions. The aim of this study is to discover novel multiferroic materials by filling the interstitial vacancies of the TTB structured niobates with various magnetic ions.
    Owing to the complex composition of the TTB compounds, the samples prepared by the solid state sintering usually contain some secondary phases, causing confusing in the characterization. Therefore, attempts were made to grow single crystals from high temperature solution by the spontaneous nucleation method. The obtained single crystals are listed as follows: Ba4La2Fe2Nb8O30, Ba6CoNb9O30, Ba6MnNb9O30, K2Nb4O11, Ba6Fe0.90Nb9.10O30 and K4Fe1.56Nb6.44O21.4. However, due to the limited time available, only two of the crystals, i.e. Ba6Fe0.90Nb9.10O30 and K4Fe1.56Nb6.44O21.4 were selected for the structural, magnetic and electrical characterizations.
    Single crystal X-ray diffraction (SC-XRD) showed that Ba6Fe0.90Nb9.10O30 had indeed the TTB structure with the space group P4/mbm and that Fe substituted with Nb, instead of entering the interstitial vacancies. Magnetic measurements showed that the crystal was potentially ferrimagnetic with the transition temperature below 10 K. Structural analysis and the measurements of dielectric constant versus temperature indicated that the crystal was likely to be ferroelectric and the transition temperature was around room temperature.
    SC-XRD showed that K4Fe1.56Nb6.44O21.4 did not belong to the TTB structure. Its space group was Pnma. This crystal was possibly ferrimagnetic as well below 10 K. Ferroelectric hysteresis loops were registered at room temperature for this crystal, although they contained a large contribution of the leakage currents. The remanent polarization measured from the hysteresis was 9.25 μC/cm2 and the coercive field 10.73 kV/cm.

    摘要 i Abstract ii 目錄 vi 表目錄 ix 圖目錄 x 第一章 前言 1 第二章 理論基礎與文獻回顧 3 2.1 液相長晶法 3 2.1.1 相圖 3 2.1.2 助熔劑法在實際上的應用 5 2.2 磁性質 7 2.2.1 原理簡介 7 2.2.2 磁滯曲線 9 2.3 電性質 10 2.3.1 原理簡介 10 2.3.2 電滯曲線 12 2.4 TTB結構 13 2.5 複鐵材料 15 第三章 實驗材料與方法 17 3.1 實驗材料 17 3.2 實驗方法 17 3.2.1 液相自發成核長晶法 18 3.3 分析方法 22 3.3.1 結構分析 22 3.3.2 表面形貌觀察及成份分析 25 3.3.3 晶體方向性分析 26 3.3.4 磁性分析 27 3.3.5 電性分析 28 第四章 結果與討論 29 4.1 Ba4La2Fe2Nb8O30 29 4.2 K2Nb4O11 30 4.3 Ba6CoNb9O30 30 4.4 Ba6MnNb9O30 31 4.5 Ba6Fe0.90Nb9.10O30 32 4.5.1 Ba6Fe0.90Nb9.10O30形貌及成份 33 4.5.2 Ba6Fe0.90Nb9.10O30結構 37 4.5.3 Ba6Fe0.90Nb9.10O30磁性質 43 4.5.4 Ba6Fe0.90Nb9.10O30介電性質 46 4.6 K4Fe1.56Nb6.44O21.4 48 4.6.1 K4Fe1.56Nb6.44O21.4形貌及成份 48 4.6.2 K4Fe1.56Nb6.44O21.4結構 54 4.6.3 K4Fe1.56Nb6.44O21.4磁性質 64 4.6.4 K4Fe1.56Nb6.44O21.4電性質 68 第五章 結論 72 第六章 參考文獻 73

    1. Schmid, H., Multi-ferroic magnetoelectrics. Ferroelectrics, 1994. 162: p. 317-338.
    2. Martin, L., S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, and R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. Journal of Physics-Condensed Matter, 2008. 20.
    3. Eerenstein, W., N.D. Mathur, and J.F. Scott, Multiferroic and magnetoelectric materials. Nature, 2006. 442: p. 759-765.
    4. Qi, X., Growth and optical characterisation of novel crystals for applications in lasers and non-linear optics. Department of Physics and Applied Physics University of Strathclyde, 1996.
    5. 金重勳, 磁性技術手冊. 2002: 中華民國磁性技術協會.
    6. 汪建民, 陶瓷技術手冊. 1994: 中華民國粉末冶金協會.
    7. Känzig, W., Ferroelectrics and Antiferroelectrics. 1957.
    8. Magnéli, A., Arkiv. Kemi., 1949. 24: p. 213-221.
    9. Francombe, M.H. and B. Lewis, Structural, dielectric and optical properties of ferroelectric lead metaniobate. Acta Crystallographica, 1958. 11: p. 696-703.
    10. Geusic, J.E., H.J. Levinstein, J.J. Rubin, S. Singh, and L.G.V. Uitert, The Nonlinear Optical Properties of Ba2NaNb5O15. Applied Physics Letters, 1967. 11: p. 269-271.
    11. Simon, A. and J. Ravez, Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials. Comptes Rendus Chimie, 2006. 9: p. 1268-1276.
    12. Cheong, S.W. and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 2007. 6: p. 13-20.
    13. Reisman, A. and F. Holtzberg, Phase Equilibria in the System K2CO3-Nb2O5 by the Method of Differential Thermal Analysis. Journal of the American Chemical Society, 1955. 77: p. 2115-2119.
    14. Roth, R.S. and J.L. Waring, Journal of research of the National Bureau of Standards, 1961. 65A: p. 341.
    15. Toby, B.H., R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 2006. 21: p. 67-70.
    16. Foster, M.C., G.R. Brown, R.M. Nielson, and S.C. Abrahams, Ba6CoNb9O30 and Ba6FeNb9O30: Two New Tungsten-Bronze-Type Ferroelectrics. Centrosymmetry of Ba5.2K0.8U2.4Nb7.6O30 at 300 K. Journal of Applied Crystallography, 1997. 30: p. 495-501.
    17. 張榮毓, 摻雜磁性離子的正方鎢青銅結構鈮酸鹽合成、晶體生長及磁電性質研究. 國立成功大學材料科學及工程研究所碩士論文, 2010.
    18. Abrahams, S.C., S.K. Kurtz, and P.B. Jamieson, Atomic displacement relationship to curie temperature and spontaneous polarization in displacive ferroelectrics. Physical Review, 1968. 172: p. 551-&.
    19. Lanfredi, S., D.H.M. Gênova, I.A.O. Brito, A.R.F. Lima, and M.A.L. Nobre, Structural characterization and Curie temperature determination of a sodium strontium niobate ferroelectric nanostructured powder. Journal of Solid State Chemistry, 2011. 184: p. 990-1000.
    20. Madaro, F., R. Saeterli, J.R. Tolchard, M.-A. Einarsrud, R. Holmestad, and T. Grande, Molten salt synthesis of K4Nb6O17, K2Nb4O11 and KNb3O8 crystals with needle- or plate-like morphology. CrystEngComm, 2011. 13: p. 1304-1313.
    21. Kumada, N., E. Iwase, and N. Kinomura, Preparation and crystal structure of layered niobium oxides: Rb(Mg0.34Nb1.66)O5 and K(Fe0.43Nb1.57)O5. Materials Research Bulletin, 1998. 33: p. 1729-1738.

    下載圖示 校內:2016-08-12公開
    校外:2016-08-12公開
    QR CODE