簡易檢索 / 詳目顯示

研究生: 鄭梓涵
Cheng, Tzu-Han
論文名稱: 以電芬頓法氧化分解樹脂模擬廢水
Decomposition and oxidation of synthetic resin-containing wastewater by Electro-Fenton technology
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 89
中文關鍵詞: 樹脂電芬頓氧化分解氨氮過氧化氫
外文關鍵詞: Electro-Fenton, ion-exchange resin, oxidative decomposition, mineralization, H2O2
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核能電廠低放射性廢棄物(low-level radioactive waste)中來自於冷卻水與廢水除礦器之廢離子交換樹脂,需透過固化焚化等方法安定化後方可進行最終處置。早期台灣以水泥固化法進行處理,然而鑒於長期貯存後水泥固化體有產生膨脹龜裂之虞,自1987年予以脫水暫存,至今全部核電廠加總已有逾1,6000桶(55加侖)脫水樹脂待處理。
    為解決各核電廠積貯廢樹脂的困擾,尋求一適當處理技術乃當務之急。目前廢樹脂的處理方法分為三大類:固化法、乾式氧化法、濕式氧化法。本研究將以濕式氧化法中的電芬頓(electro-Fenton)技術氧化分解離子交換樹脂,探討變因包括:樹脂負載量、初始酸鹼值、過氧化氫速率與劑量、亞鐵濃度、外加電流以及亞鐵來源。結果顯示,因氧化劑加入迅速降低溶液酸鹼值,起始pH值對樹脂氧化分解影響不大,electro-Fenton程序在最佳操作條件為40g/L resin loading、20 mM FeSO4、pHi = 2、50 % H2O2 = 240 ml(約3400 mM)、H2O2 flow rate =1.2 ml/min、I = 1 A,得樹脂分解率和礦化率皆> 95%。以最佳操作條件進行官能基脫除機制的探討,陰離子交換樹脂相較陽離子交換樹脂不易被分解,並且測試觸媒重複使用性,以及電氯氧化法處理陰離子交換樹脂氧化分解釋出氨氮之可行性。

    The ion-exchange resin (IER) is commonly used in nuclear power plant to purify the cooling water and remove radioactive elements. Cementation is a conventional process to treat the spent resin in Taiwan. Swelling of resin by ion-exchanging with calcium ions in the concrete destroyed the container after a long-term storage. This work used electro-Fenton to dissolve the IER at an initial temperature of 85℃. Effectiveness of IER oxidative decompostion was then evaluated by varying the IER loading, the pHi of the solution, the flow rate of H2O2, the dosage of H2O2, the electrical current, ferrous ion concentration and ferrous ion type. Experimental results revealed that the pHi (1.0-3.0) did not play a vital role in ultimate IER removal. IER treated by electro-Fenton was eventually optimized with 1.2 ml/min H2O2, 240 ml of 50 % H2O2, 20 mM FeSO4 at constant current 1 A as treating 40 g/L resin. The decomposition of cationic resin is easier than the anionic resin. After adding 3 times, the IERr and TOCr are near 90 %. After oxidative decomposition of resin, electrochemical oxidation with chloride is feasible.

    第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的與內容 2 第二章 文獻回顧 3 2-1 離子交換樹脂基本性質 3 2-2 低放射性廢樹脂 6 2-3 廢樹脂處理技術 8 2-3-1 直接固化法 8 2-3-2 乾式氧化法 10 2-3-3 溼式氧化法 11 2-4 芬頓相關技術 14 2-5 電化學法除氨氮 22 第三章 實驗設備、材料與方法 24 3-1 研究架構及流程 24 3-2 實驗藥品 25 3-2-1 樹脂 25 3-2-1-1 元素分析 26 3-2-1-2 水份測定 26 3-2-1-3 結構分析 27 3-2-2 實驗所需之藥品 28 3-2-3 分析所需之藥品 29 3-3 實驗檢測儀器與分析方法 30 3-4 實驗裝置 35 3-5 實驗步驟 36 3-6 反應機制 37 3-7 理論值及公式定義 38 第四章 結果與討論 39 4-1 不同降解技術對樹脂氧化分解效果比較 39 4-2 Electro-Fenton變因探討 42 4-2-1 樹脂負載量之影響 42 4-2-2 初始酸鹼值之影響 46 4-2-3 過氧化氫速率與劑量之影響 48 4-2-4 亞鐵濃度之影響 51 4-2-5 外加電流之影響 54 4-2-6 不同亞鐵來源的影響 57 4-3 官能基脫除機制 59 4-4 觸媒重複使用 61 4-5 電氯氧化法除氨氮 62 第五章 結論與建議 64 5-1 結論 64 5-2 建議 64 參考文獻 65 附錄A 73 A-1不同觸媒對樹脂氧化分解效果比較 73 附錄B 75 B-1 終止反應 75 附錄C 76 C-1 EQC研討會 76

    [1]張清志, "離子交換樹脂濕式氧化分解之研究," 碩士, 應用化學研究所, 中國文化大學, 2000.
    [2]J. Wang and Z. Wan, "Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry," Progress in Nuclear Energy, vol. 78, pp. 47-55, 2015.
    [3]李忠正, 李慶瑞, and 陳孟仁, "2011年兩岸核電廢物管理研討會," 2011.
    [4]C. Huang, T. Liu, and J. Tyen, "Method for processing spent ion-exchange resins," Taiwan Patent US 7,482,387 B2, 2009.
    [5]J. Rideaux, "The role of ion exchange resins in long-term spent fuel storage," Westinghouse Savannah River Company1999.
    [6]W. S. Miller, C. J. Castagna, and A. W. Piepe, "Understanding ion-exchange resins for water treatment systems," General Electric Company, GE Water & Process Technologies1981.
    [7]黃仁川, "圖表解析ASTM D2187顆粒狀離子," 台電核能月刊, vol. 353, pp. 16-40, 2012.
    [8]黃慶村, "放射性廢棄物固化技術," 核能環保人, vol. 122, 2005.
    [9]行政院原子能委員會放射性物料管理局, "核電廠放射性廢棄物管制."
    [10]IAEA, "Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers," vol. 408, 2002.
    [11]IAEA, "Nuclear Power Reactors in the world," 2014.
    [12]L. K. Pan, B. D. Chang, and D. S. Chou, "Optimization for solidification of low-level-radioactive resin using Taguchi analysis," Waste Management, vol. 21, pp. 767-772, 2001.
    [13]L. Junfeng, Z. Gang, and W. Jianlong, "Solidification of low-level-radioactive resins in ASC-zeolite blends," Nuclear Engineering and Design, vol. 235, pp. 817-820, 2005.
    [14]Q. Sun, J. Li, and J. Wang, "Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite," Nuclear Engineering and Design, vol. 241, pp. 5308-5315, 2011.
    [15]J. Li and J. Wang, "Advances in cement solidification technology for waste radioactive ion exchange resins: a review," Journal of Hazard Materials, vol. 135, pp. 443-448, Jul 31 2006.
    [16]A. Katz, A. R. Brough, R. J. Kirkpatrick, L. J. Struble, G. K. Sun, and J. F. Young, "Cement solidification of simulated off-gas condensates from vitrification of low-level nuclear waste solutions," Waste Management, vol. 21, pp. 543-553, 2001.
    [17]W. S. Chuang and C. P. Wang, "Solidification of liquid radwaste by cement containing fly ash ground blast-furnace slag and silica fume," Nuclear Science Journal, vol. 33, pp. 417-427, 1996.
    [18]C. Shi and X. Shen, "Immobilization of radioactive wastes with Portland and alkali-slag cement pastes," II Cemento, vol. 91, pp. 97-108, 1994.
    [19]S. Bagosi and L. J. Csetenyi, "Immobilization of caesium-loaded ion exchange in zeolite-cement blends," Cement and Concrete Research, vol. 29, pp. 479-485, 1999.
    [20]A. E. Osmanlioglu, "Immobilization of radioactive waste by cementation with purified kaolin clay," Waste Management, vol. 22, pp. 481-483, 2002.
    [21]W. Huang, "Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber," Cement Concrete Research, vol. 27, pp. 395-406, 1997.
    [22]A. M. El-Kamash, A. M. El-Dakroury, and H. F. Aly, "Leaching kinetics of Cs-137 and Co-60 radionuclides fixed in cement and cement-based materials," Cement and Concrete Research, vol. 32, pp. 1797-1803, 2002.
    [23]W. Huang, "Improving the properties of cement–fly ash grout using fibler and superplasticizer," Cement and Concrete Research, vol. 31, pp. 1033-1041, 2001.
    [24]K. Yoshioka, E.-i. Tazawa, K. Kawai, and T. Enohata, "Adsorption characteristics of superplasticizers on cement component minerals," Cement and Concrete Research, vol. 32, pp. 1507-1513, 2002.
    [25]S. K. Agarwal, I. Masood, and S. K. Malhotra, "Compatibility of superplasticizers with different cements," Construction and Building Materials vol. 14, pp. 253-259, 2000.
    [26]A. K. Minocha, N. Jain, and C. L. Verma, "Effect of inorganic materials on the solidification of heavy metal sludge," Cement and Concrete Research, vol. 33, pp. 1695-1701, 2003.
    [27]M. L. D. Gougar, B. E. Scheetz, and D. M. Roy, "Ettringite and C-S-H portland cement phases for waste ion immobilization: a review," Waste Management, vol. 16, pp. 295-303, 1996.
    [28]M. Yousuf, A. Mollah, J. Liang, and D. L. Cocke, "Speciation of silver in cementitious environment," Journal of Hazardous Materials vol. 63, pp. 163-177, 1998.
    [29]N. K. Ghattas, N. E. Ikladious, and S. B. Eskander, "Poly(methyl methacrylate) as incorporation medium for spent ion-excgange resin," Journal of Applied Polymer Science, vol. 28, pp. 1779-1786, 1983.
    [30]K. T. Kook, S. J. Sik, and P. H. Kwon, "A study on leaching characteristics of bituminized solid form of radioactive waste resin by addition of poly ethylene," Journal of Korean Society of Environmental Engineers, vol. 26, pp. 35-39, 2004.
    [31]D. L. Michlink, R. W. Marshall, V. L. Turner, K. R. Smith, and E. M. VanderWall, "The feasibility of spent resins incineration at nuclear power plants," 1979.
    [32]IAEA, "Treatment of spent ion-exchange resins for storage and disposal," International Atomic Energy Agency,Vienna, IAEA,Vienna1985.
    [33]K. Korpiola, J. Järvinen, K. Penttilä, and P. Kotiluoto, "Modeling of incineration of spent ion exchange resins of boiling water and pressurized water nuclear reactors," Nuclear Technology, vol. 172, pp. 230-236, 2010.
    [34]M. A. Dubois, J. F. Dozol, C. Nicotra, J. Serose, and C. Massiani, "Pyrolysis and incineration of cationic and anionic ion-exchange resins — Identification of volatile degradation compounds," Journal of Analytical and Applied Pyrolysis, vol. 31, pp. 129-140, 1995.
    [35] H. Matsuzuru, Y. Kobayashi, S. Dojiri, J. Akatsu, and N. Moriyama, "A comparison of the acid digestion of spent ion exchange resins using H2SO4-HNO3 and H2SO4-H2O2," NUCLEAR AND CHEMICAL WASTE MANAGEMENT, vol. 4, pp. 307-312, 1983.
    [36]K. Kim, S. H. Son, K. Kim, J. H. Han, K. D. Han, and S. H. Do, "Treatment of radioactive ionic exchange resins by super- and sub-critical water oxidation (SCWO)," Nuclear Engineering and Design, vol. 240, pp. 3654-3659, 2010.
    [37]Y. J. Huang, H. P. Wang, C. T. Li, and Y. C. Chien, "Minimization of cobalt nuclide emissions in supercritical water oxidation of spent resin," Chemosphere, vol. 40, pp. 347-349, 2000.
    [38]A. Leybros, A. Roubaud, P. Guichardon, and O. Boutin, "Supercritical water oxidation of Ion Exchange Resins in a stirred reactor: Numerical modelling," Chemical Engineering Science, vol. 69, pp. 170-180, 2012.
    [39]王智正, "運用高溫電漿技術模擬核電廠低放射性廢棄物之研究," 碩士, 材料工程系, 國立台灣海洋大學, 2003.
    [40]K. Ferris, G. i. Katagiri, K. Sano, and N. Higashiura, "Radwaste reduction technology for spent resins," 2003.
    [41]E. Brillas, I. Sires, and M. A. Oturan, "Electro-Fenton Process and related electrochemical technologies based on Fenton's reaciton chemistry," Chemical Reviews, vol. 109, pp. 6570-6631, 2009.
    [42]V. L. Snoeyink, D. Jenkins, and 李敏華, 水質化學(Water chemistry): 復漢出版社.
    [43]P. Wardman, "Reduction potentials involving inorganic free radicals in aqueous solution," Journal of Physical and Chemical Reference Data, vol. 18, pp. 1637-1755, 1989.
    [44]J. D. Laat, G. T. Le, and B. Legube, "A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2," Chemosphere, vol. 55, pp. 715-723, May 2004.
    [45]H. Wu and T. Wu, "Degradation of radioactive ion-exchange resin using H2O2," Journal of the Chinese Institue Chemical Engineers, vol. 34, pp. 263-274, 2003.
    [46]J. D. Laat, H. Gallard, S. Ancelin, and B. Legube, "Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV AND Fe(II) or Fe(III)/H2O2," Chemosphere, vol. 39, pp. 2693-2706, 1999.
    [47]M. Zahorodna, R. Bogoczek, E. Oliveros, and A. M. Braun, "Application of the Fenton process to the dissolution and mineralization of ion exchange resins," Catalysis Today, vol. 129, pp. 200-206, 2007.
    [48] T. L. Gunale, V. V. Mahajani, P.K.Wattal, and C. Srinivas, "Studies in liquid phase mineralization of cation exchange resin by a hybrid process of Fenton dissolution followed by wet oxidation," Chemical Engineering Journal, vol. 148, pp. 371-377, 2009.
    [49]M. Fukushima and K. Tatsumi, "Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acid, and hydrogen peroxide," Environmental Science Technology, vol. 35, pp. 1771-1778, 2001.
    [50]M. Panizza and G. Cerisola, "Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine," Electrochimica Acta, vol. 48, pp. 1515-1519, 2003.
    [51]M. Zahorodna, E. Oliveros, M. Wörner, R. Bogoczek, and A. M. Braun, "Dissolution and mineralization of ion exchange resins: differentiation between heterogeneous and homogeneous (photo-)Fenton processes," Photochemical & Photobiological Sciences, vol. 7, p. 1480, 2008.
    [52]E. Brillas, J. C. Calpe, and J. Casado, "Mineralization of 2,4-D by advanced electrochemical oxidation processes," Water Research, vol. 34, pp. 2253-2262, 2000.
    [53]Q. Wang and A. T. Lemley, "Oxidation of diazinon by anodic Fenton treatment," Water Research, vol. 36, pp. 3237-3244, 2002.
    [54]Y. H. Huang, S. S. Chou, M. G. Peng, G. H. Huang, and S. S. Cheng, "Case study on the effluent of petrochemical wastewater by electro-Fenton method," Water Science Technology, vol. 39, pp. 17-24, 1999.
    [55]M. Gnann, C. H. Gregor, and S. Schelle, "Chemical oxidation process for purifying highly contaminated wastewater," WO patent 93/08129 Patent, 1993.
    [56]Y. H. Huang, Y. F. Huang, P. S. Chang, and C. Y. Chen, "Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton," J Hazard Mater, vol. 154, pp. 655-662, Jun 15 2008.
    [57]H. Kim, I. Kim, G. Kim, J. Kim, and D. Kang, "Wet oxidation of mixed resins by a modified Fenton's reaction with an electrochemical potential," Journal of Industrial and Engineering Chemistry, vol. 13, pp. 665-668, 2007.
    [58]王煒仁, "新型光觸媒複合材料降解有機樹脂之研究," 碩士, 原子科學系, 清華大學, 2005.
    [59]K. Min, J. Yu, Y. Kim, and Z. Yun, "Removal of ammonium from tannery wastewater by electrochemical treatment," Journal of Environmental Science and Health, Part A, vol. 39, pp. 1867-1879, 2004.
    [60]Y. Deng and J. D. Englehardt, "Electrochemical oxidation for landfill leachate treatment," Waste Manag, vol. 27, pp. 380-388, 2007.
    [61]Y. Vanlangendonck, D. Corbisier, and A. V. Lierde, "Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique)," Water Research, vol. 39, pp. 3028-3034, Aug 2005.
    [62]S. H. Lin and C. L. Wu, "Electrochemical removal of nitrite and ammonium," Water Research, vol. 30, pp. 715-721, 1996.
    [63]A. Folli, C. Pade, T. B. Hansen, T. D. Marco, and D. E. Macphee, "TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry," Cement and Concrete Research, vol. 42, pp. 539-548, 2012.
    [64]K. Kim, Y. Kim, I.-T. Kim, G.-I. Park, and E.-H. Lee, "The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode," Electrochimica Acta, vol. 50, pp. 4356-4364, 2005.
    [65]A. G. Volkov, Interfacial Catalysis: Marcel Dekker Inc., 2003.
    [66]S. Ghosh, K. Dhole, M. K. Tripathy, R. Kumar, and R. S. Sharma, "FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins," Journal of Radioanalytical and Nuclear Chemistry, vol. 304, pp. 917-923, 2015.
    [67]K. Yan, Electrostatic Precipitation: Hangzhou, 2008.
    [68]L. K. Wu, K. Y. Chen, S. Y. Cheng, B. S. Lee, and C. M. Shu, "Thermal decomposition of hydrogen peroxide in the presence of sulfuric acid," Journal of Thermal Analysis and Calorimetry, vol. 93, pp. 115-120, 2008.
    [69]G. Hubner and E. Roduner, "EPR investigation of HO• radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes," Journal of Matirials Chemistry, vol. 9, pp. 409-418, 1999.
    [70]S. Sekusak, K. R. Liedl, and A. Sabljic, "Reactivity and regioselectivity of hydroxyl radical addition to halogenated ethenes," Journal of Physical and Chemical A, vol. 102, pp. 1583-1594, 1998.
    [71]G. R. Peyton, "The free-radical chemistry of persulfate-based total organic carbon analyzers.," Marine Chemistry, vol. 41, pp. 91-103, 1993.
    [72]F. J. Benitez, J. L. Acero, F. J. Real, F. J. Rubio, and A. I. Leal, "The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions," Water Research, vol. 35, pp. 1338-1343, 2001.
    [73]M. Panizza and G. Cerisola, "Electro-Fenton degradation of synthetic dyes," Water Research, vol. 43, pp. 339-44, Feb 2009.
    [74]黃君平, "利用固定化之活性鐵氧化物催化氧化降解與礦化酚及其應用之研究," 博士, 化學工程學系, 成功大學, 2010.
    [75]Y. Shih, C. Lin, and Y. Huang, "Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater," Separation and Purification Technology, vol. 104, pp. 100-105, 2013.
    [76]W. T. Mook, M. H. Chakrabarti, M. K. Aroua, G. M. A. Khan, B. S. Ali, M. S. Islam, et al., "Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review," Desalination, vol. 285, pp. 1-13, 2012.
    [77]丁涴屏, "以新穎之光電-芬頓程序處理苯磺酸與2,6-二甲基苯胺," 博士, 化學工程系, 成功大學, 2008.
    [78]C. Liao, S. Kang, and F. Wu, "Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2-UV process," Chemosphere, vol. 44, pp. 1193-1200, 2001.
    [79]S. Xiao, J. Qu, X. Zhao, H. Liu, and D. Wan, "Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions," Water Research, vol. 43, pp. 1432-1440, Mar 2009.
    [80]G. R. HALL and M. STREAT, "Radiation-induced Decomposition of lon-exchange Resins. Part I. Anion-exchange Resins.," J. Chem. Soc, pp. 5205-5211, 1963.
    [81]N. K. Urbañski and A. Berêsewicz, "Generation of •OH initiated by interaction of Fe2+ and Cu+ with dioxygen comparison with the Fenton chemistry," Acta Biochimica Polonica, vol. 47, pp. 951-962, 2000.

    無法下載圖示 校內:2020-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE