簡易檢索 / 詳目顯示

研究生: 汪柏岑
Wang, Bo-Tsen
論文名稱: 結合拉丁超立方體抽樣法與矩陣拆解法建構空間隨機場之研究
The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 84
中文關鍵詞: 蒙地卡羅抽樣法拉丁超立方抽樣法空間連續性矩陣拆解法
外文關鍵詞: Monte Carlo Sampling, Latin Hypercube Sampling, spatial structure, LU decomposition
相關次數: 點閱:120下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在進行地下水模擬的過程中,由於並非所有的網格內皆有水力性質量測值,因此在建立水文地質模型前,必須先進行網格內的隨機變數之模擬抽樣,建立水文數值參數隨機場。透過抽樣法來產生隨機數值,並將抽樣所得的數值代表為網格內之水文數值參數,用來提供建立水文地質模型所需。因此,統計抽樣法在模擬的過程中扮演著很重要的過程。近年來,拉丁超立方體抽樣法廣泛的使用,透過分層抽樣的概念,能準確的描述統計數值特性,但是卻無法描述出原有的空間結構。本研究將針對統計數值特性及空間結構做討論,利用拉丁超立方體抽樣法快速且準確獲得統計數值特性的特徵;同時,利用矩陣拆解法拆解相關性矩陣來確保擁有原本的空間連續特性。本研究提出結合拉丁超立方體的分層抽樣法與矩陣拆解法,建構具有空間連續特性之隨機場,並發展條件模擬以及非條件兩種模擬法。利用本研究所提出的方法與其他三種模擬方法做統計數值以及空間結構的效率比較。研究模擬結果顯示出本研究所提出的方法,在條件模擬以及非條件模擬中,相較於其他三種模擬方法,可以利用較少的實現場數量達到統計數值的精準度,並同時獲得穩定的模擬效果及保有原來的空間結構。

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

    Abstract I 摘要 II 誌謝 III Contents IV List of Tables VI List of Figures VII Notation X Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 3 1.3 Flow Chart 5 Chapter 2 Methodology 6 2.1 Geostatistics Theory 7 2.2 Simulation 8 2.2.1 Unconditional Simulation 9 2.2.2 Conditional Simulation 11 2.3 Sequential Gaussain Simulation 13 2.4 LU Decomposition Method 15 2.4.1 Cholesky Decomposition Method 17 2.5 Latin Hypercube Sampling Method 18 2.5.1 ZP Method 21 2.6 LU Decomposition Latin Hypercube Sampling Method (LULHS) 23 Chapter 3 Unconditional Simulation 24 3.1 Example for demonstration 24 3.2 Comparison of the Results 25 Chapter 4 Conditional Simulation 42 4.1 Example for demonstration 42 4.2 Comparison of the Results 45 Chapter 5 Conclusions and Suggestions 48 5.1 Conclusions 48 5.2 Suggestions 49 References 50 Appendix A Statistics of log-conductivity for famous hydrogeological experimental sites 55 Appendix B Example for ZP method 56 Appendix C Unconditional simulation results for variable C and D 61 Appendix D Unconditional simulation results for the variance of 1 and 2 72 Appendix E The data of the conditional points and its coordinate. 84

    1. Alabert, F., The practice of fast conditional simulations through the LU decomposition of the covariance matrix, Mathematical Geology, 19, 369-386, 1987.
    2. Adams, E. E., and L. W. Gelhar., Field Study of Dispersio in a Heterogeneous Aquifer 2. Spatial Moments Analysis, Water Resources Research, 28, 3293- 3307, 1992.
    3. Boggs, J.M., C. Y. Steven., and M. B. Lisa., Field Study of Dispersion in Heterogeneous Aquifer 1. Overview and Site Description, Water aaaaaaResources Research, 28, 3281-3291, 1992.
    4. Bohling, G., INTRODUCTION TO GEOSTATISTICS And VARIOGRAM ANALYSIS, Kansas Geological Survey, 2005.
    5. Bierkens, F. P., and F. C. van Geer, Stochastic Hydrology, Department of Physical Geography, Utrecht University, 2012.
    6. Carre, F. A., B. McBratney., and B. Minasny., Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping, Geoderma, 141, 1-14, 2007.
    7. Chiles, J., Geostatistics: modeling spatial uncertainty, Oxford University, Wiley Blackwell, 2011.
    8. Davis, D., Production of conditional simulations via the LU triangular decomposition of the covariance matrix, Mathematical Geology, 19, 91-98, 1987.
    9. Deutsch, C.V., Algorithmically-defined random function models, 422-435, 1994.
    10. Deutsch, C. V., and A. G. Journel, GSLIB: Geostatistical Software Library and User’s Guide, Oxford Univ. Press, New York, 1998.
    11. Delbari, M., A. Peyman., and L. Willibald., Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content, Elsevier, 79, 163-169, 2009.
    12. Eggleston, J., and S. Rojstaczer., Inferring spatial correlation of hydraulic conductivity from sediment cores and outcrops, Geophysical Research aaaaaaLetters, 25, 1998.
    13. Edzer, J. P., and B. M. H. Gerard., Latin Hypercube Sampling of Gaussian Random Fields, Technometrics, 37-41, 1999.
    14. Freyberg, D. L., A Natural Gradient Experiment on Solute Transport in a Sand Aquifer 2. Spatial Moments and the Advection and Dispersion of Nonreactive Tracers, Water Resources Research, 22, 2031-2046, 1986.
    15. Gelhar, L. W., Stochastic Subsurface Hydrology, Prentice Hall, New Jersey, 1993.
    16. Gotway, C.A., and B. M. Rutherford., Stochastic simulation for imaging spatial uncertainty: comparison and evaluation of available algorithms. Geostatistical Simulations, 1–21, 1994.
    17. Goovaerts, P., Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, 1997.
    18. Horn, R., A. Johnson., amd R. Charles., Matrix Analysis, Cambridge University Press, 1985.
    19. Hernandez, J. J. G., A stochastic approach to the simulation of block conductivity fields conditioned upon data measured at a smaller scale, Ph. D dissertation, Standfor University, 1991.
    20. Hess, K. M., Steven, H. W., and A.C. Michael., Large-Scale Natural Gradient Tracer Test in Sand and Gravel, Cape Cod, Massachusetts Hydraulic Conductivity Variability and Calculate Macrodispersivities, Water Resources Research, 28,2011-2027, 1992.
    21. Helton, J.C., and F. J. Davis., Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Elsevier, 81, 23-69, 2003.
    22. Helton, J.C., F. J. Davis., and J. D. Johnson., A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling, Elsevier, 89, 305-330, 2005.
    23. Iman, R.L., J. M., Davenport, and D. K., Zeigler, Latin hypercube sampling(program user's guide), 1980.
    24. Iman, R. L., and W. J. Conover, Adistribution-free approach to inducing rank correlation among input variables, Commun. Stat., 11, 311 –334, 1982.
    25. Isaaks, E.H., and R. M., Srivastava, An introduction to Applied Geostatistics. Oxford University Press, New York, 1989.
    26. Killey, R. W. D., and Moltyaner, G. L., Twin Lake Tracer Tests: Setting, Methodology, and Hydraulic Conductivity Distribution, Water Resources Research, 24, 1585-1612, 1988.
    27. Kyriakidis, P.C., Sequential Spatial Simulation using Latin Hypercube Sampling, Quantitative Geology and Geostatistics, 65-74, 2004.
    28. Metropolis, M., and S. Ulam., The Monte Carlo Method, Journal of the American Statistical Association, 44, 335-341, 1949.
    29. Matheron, G., Principle of Geostatistics, Economic Geology, 58, 1246-1266, 1963.
    30. McKay, M. D., W. J., Conover. and R. J., Beckman, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code, Technometrics., 21, 239-245, 1979.Mckay, M. D., Latin hypercube sampling as a tool in uncertainty analysis of computer models, Winter Simulation Conference, 557-564, 1992.
    31. McBratney, A. B., B. Minasny., and R. V. Rossel., Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis, aaaaaaGeoderma, 136, 272-278, 2006.
    32. Minasny, B., and A. B. McBratney., A conditioned Latin hypercube method for sampling in the presence of ancillary information, Computers and Geoscience, 32, 1378-1388, 2006.
    33. Olea, R. A., Geostatistics for Engineers and Earth Scientists, SpringerScience+Business Media, New Tork, 1991
    34. Rehfeldt, K. R., Boggs, J. M., and Lynn, W. G., Field Studyo f Dispersion in a Heterogeneous Aquifer 3. Geostatistical Analysis of Hydraulic Conductivity, Water Resources Research, 28, 3309-3324, 1992.
    35. Sudicky, E. A., A Natural Gradient Experiment on Solute Transport in a Sand Aquifer: Spatial Variability of Hydraulic Conductivity and Its Role in the Dispersion Process, Water Resources Research, 22, 2069-2082, 1966.
    36. Stein, M. L. , Large Sample Properties of Simulations Using Latin Hypercube Sampling, Technometrics., 29, 143-151, 1987.
    37. Turing, A. M. Rounding-Off Errors in Matrix Processes, The Quarterly Journal of Mechanics and Applied Mathematics, 287–308, 1948.
    38. Xu, C., H. S. HE., Y. Chang., X. LI., and R. BU., Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation, Ecological Modelling, 185, 255-269, 2005.
    39. Zhang, Y., and G. Pinder., Latin hypercube lattice sample selection strategy for correlated andom hydraulic conductivity fields, Water Resources Research, 39, 2006.

    下載圖示
    2016-08-25公開
    QR CODE