簡易檢索 / 詳目顯示

研究生: 徐明君
Hsu, Ming-Chun
論文名稱: 應用大尺度渦流法計算載具顆粒紊流場
Large Eddy Simulation on Particle-Laden Turbulent Channel Flow
指導教授: 張克勤
Chang, K. C.
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 201
中文關鍵詞: 大尺度渦流模擬壁面粗糙度兩相流紊流調制顆粒碰撞
外文關鍵詞: Inter-Particle Collision, Large Eddy Simulation, Wall Roughness, Particle Laden, Turbulence Modulation
相關次數: 點閱:81下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用大尺度渦流法並配合Lagrangian型之顆粒運動方程式來探討紊流流場與固體顆粒之間的兩相交互作用。所測試的流場為一完全發展之垂直渠道流,其雷諾數基於半個渠道高度及摩擦速度 (friction velocity) 為180及640。流體中所載具之三種固體顆粒, Lycopodium,玻璃及銅,其密度均遠大於氣相流體密度但是其直徑卻小於Kolmogorov length scale。氣相流場以大尺度渦流法求解,所採用的次格點尺度模式為dynamic mixed model。每一個固體顆粒均以Lagrangian法追蹤以求得每一瞬間之顆粒位置與速度。雖然本文所探討的問題為顆粒稀薄之流場,但仍將顆粒與顆粒間的碰撞納入考量。碰撞對的搜尋採用deterministic方法而碰撞後的狀態則由硬球模式 (hard-sphere model) 來決定。本論文目地著重於探討 (1)紊流流場結構對顆粒分布之影響;(2)顆粒間的碰撞與壁面粗糙度對顆粒運動及紊流調制 (turbulence modulation) 之影響;(3)顆粒影響紊流調制之機制。
    研究結果發現,在近牆區,具有較小Stokes數之顆粒容易受sweep事件的影響而朝壁面方向運動,然而大部分脫離壁面朝向渠道中心運動的此類顆粒卻又容易陷入ejection-like的環境中而無法離開。此一紊流對小Stokes數顆粒的作用使得大量的顆粒累積在近牆區中並產生preferential concentration的現象。此外,考慮顆粒與顆粒間的碰撞可增強顆粒在垂直壁面方向的混合效應,防止顆粒聚集成群並使得流向方向顆粒平均速度的分佈曲線較為平緩。顆粒與顆粒間的碰撞將會加大兩相間的速度差,由此進一步地增強紊流衰減的程度。紊流強度因顆粒的存在而減弱或可歸因於兩個原因,一則直接由顆粒阻力所造成,另一者則由透過改變紊流能量傳遞或產生的機制而造成。和實驗值相比,本研究之計算低估了顆粒與流體間的速度差,導致所計算的顆粒阻力偏低,因而所得之紊流衰減量較實驗值為低。此外,顆粒的存在會抑制雷諾剪應力的強度使得紊流動能的源項(production term)減弱。雖然顆粒的存在會增強小尺度紊流的強度,但藉由影響紊流的結構及增加Kolmogorov length scale卻會增加能量耗散的程度。因此,整體來說紊流強度會因顆粒的存在而被削弱。由於整體紊流強度隨顆粒負載比(mass loading ratio)的增加而降低,dynamic mixed model所計算之模式常數Cs也隨之降低以反應由大尺度傳遞到小尺度能量之減少。除此之外,本文也發現壁面粗糙程度的高低亦會影響紊流調制量,其影響紊流流場的機制則類似於考慮顆粒間的碰撞所造成的影響。考慮壁面粗糙度可增強近牆區之紊流強度並抑制渠道中心區域之紊流。增強或抑制紊流強度之轉換點則取決於壁面粗糙程度,壁面粗糙度越高則此一轉換點越接近壁面,換言之,紊流強度受到抑制的區域越廣。

    The interactions between turbulence flow and particle motion are investigated using Large eddy simulation in a vertical, fully-developed channel flow at two Reynolds numbers 180 and 644 which are based on the half-channel width and friction velocity. The flows are loaded separately with three classes of spherical, heavy particles with diameters smaller than the Kolmogorov length scale. The gas-phase flow field is obtained by the large eddy simulation (LES) incorporated with the dynamic mixed model. Each individual particle is tracked by a Lagrangian method. Inter-particle collisions are taken into consideration by using a deterministic collision detection method and the hard sphere model. The objective of this work is to investigate the influences of turbulence structure on particle dispersion, the effect of inter-particle collisions on the gas phase, mechanisms responsible for turbulence modulation, and the effect of particle-wall interactions on both phases.
    Particles with small Stokes numbers tend to transport toward the wall by the sweep events and be trapped in the ejection-like environments. This process accumulates particle along the low speed streaks in the near-wall region. The inter-particle collisions cannot be ignored even in particle-dilute cases. Indeed, consideration of the inter-particle collisions in the modeling can enhance the particle transverse mixing and increase the attenuation of fluid turbulence. Attenuation of turbulence kinetic energy is due to either the particle drag effect or the modification on the transport mechanism of turbulence kinetic energy. The suppression of Reynolds stresses with increasing mass loading ratio decreases the production rate of turbulent kinetic energy. As a result, the energy contented in the fluid decreases. However, the effect of particles on gas-phase turbulence is not uniform for all scales. Presence of particles suppresses turbulence at large scales, while it increases the energy contained at small scales. The turbulence spatial structure is modified by which the energy flux to dissipative scales is increased. The model constant predicted by the dynamic mixed model becomes smaller and the Kolmogorov length scale becomes larger with increasing mass loading ratios. In addition, in the case of lower wall roughness, the effect of wall roughness enhances turbulence in most regions of the channel except at the channel centre where turbulence intensity is attenuated. In contrast, for a channel with high wall roughness, strong turbulence attenuation across most of the channel is observed

    ABSTRACT i TABLE OF CONTENTS xv LIST OF TABLES xvii LIST OF FIGURES xviii NOMENCLATURE xxiv I Introduction and Objectives 1 1.1 Introduction ......................1 1.2 Objectives .......................14 II Large Eddy Simulation of Turbulent Channel Flow16 2.1 Gas-Phase LES Equations...........16 2.2 Subgrid Scale Models..............20 2.2 Gas-Phase Solver .................25 III Particle Motion 37 3.1 Particle Equation of Motion.......37 3.2 Inter-particle collision .........41 3.3 Dispersed Phase Solver ...........48 IV Passive Particle Transport ... 49 4.1 Computational Details ............49 4.2 Eulerian Gas-Phase Statistics ....57 4.3 Eulerian Dispersed-Phase Statistics ...60 4.4 Particle Distribution and Turbulence Structure ...68 4.5 Conclusions ......................76 V Effects of Inter-Particle Collision and Turbulence Modulation ...78 5.1 Importance of Inter-Particle Collision ...78 5.2 Simulation Details ..............80 5.3 Effects of Inter-Particle Collisions on Both phases ...81 5.4 Introduction to Turbulence Modulation ...89 5.5 Turbulence Modulation Due to the Presence of particles ...92 5.6 Conclusions .....................102 VI Particle-Wall Interaction ... 104 6.1 Introduction ....................104 6.2 Results and Discussion ..........110 6.3 Conclusions .....................116 VII Conclusions and Future Work ... 118 7.1 Conclusions .....................118 7.2 Recommendations for future work..120 REFERENCES 122 TABLES 129 FIGURES 138 PUBLICATIONS 200 VITA 201

    Allen, M. P. & Tildesly, D. J. 1986 Computer Simulation of Liquids. Oxford science publication.

    Armenio, V., Piomelli, U., Fiorotto, V. 1999 Effect of the subgrid scales on particle motion. Phys. Fluids, 11, 3030-3042.

    Bardinal, J., Ferziger, J. H., & Reynolds, W. C. 1980 Improved subgrid scale models for large eddy simulations. AIAA Paper No. 80-1357.

    Bird, G. A. 1976 Molecular Gas Dynamics. Clarendon.

    Boivin, M. & Simonin, O. 2000 On the predictions of gas-solid flows with two-way coupling using large eddy simulation. Phys. Fluids, 12, 2080-2090.

    Boivin, M., Simonin, O. & Squires K. D. 1998 Direct numerical of turbulence modulation by particles in isotropic turbulence. J. Mech. Fluid, 375, 235-263.

    Burton, T. M. & Eaton, J. K. 2002 High-resolution simulations of particle-eddy interactions. Powder Technology, 125, 104-110.

    Cabot, W. 1994 Local dynamic subgrid-scale models in channel flows. CTR, Annual Research Briefs, 143-160.

    Chang, K. C. & Yang, J. C. 1999 Investigation of drag coefficient used in Eulerian-Lagrangian formulation of two-phase turbulent flow. IAA Journal., 37, 434-442.

    Chapman, D. R. 1979 Computational aerodynamics development and outlook. AIAA Journal., 17, 193.

    Chorin, A. J. 1969 A numerical method for solving incompressible viscous flow problems. J. Comp. Phys., 2, 12.

    Clift, R., Grace, J. R., & Webber, M. E., 1978 Bubbles, Drops, and Particles, Academic Press, New York.

    Crowe, C. T. 1982 Review: Numerical models for dilute gas-particle flows. Trans. ASME I: J. Fluid Engng., 104, 297-303.

    Crowe, C. T., Sommerfeld, M., & Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles. CRC Press.

    Crowe, C. T., Trout, T. R. & Chung, J. N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech., 28, 11-43.

    Deardoff, J. W. 1970 A numerical study of three dimensional turbulent channel flow at large Reynolds numbers. J. Fluid. Mech., 41, 453-480.

    Dennis, S. C. R. Singh, S. N. & Ingham, D. B. 1980 The steady flow due to a rotating sphere at low and moderate Reynolds numbers. J. Fluid. Mech. 101, 257-279.

    Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Int. J. Multiphase Flow, 20, 169-209.

    Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A, 5. 1790-1801.

    Fessler, J. R. & Eaton, J. K. 1999 Turbulence Modification by particles in backward-facing step flow. J. Fluid Mech., 349, 97-117.

    Fessler, J. R., Kulick J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids, 6, 3742-3749.

    Fukagata, K., Zahrai, S. Kondo, S. & Bark, F. H. 1998 Force balance in a turbulent particulate channel flow. Int. J. Multiphase Flow, 24, 867-887.

    Fukagata, K., Zahrai, S. Kondo, S. & Bark, F. H. 2001a Anomalous velocity fluctuation in particulate turbulent channel flow. Int. J. Multiphase Flow., 27, 701-719.

    Fukagata, K. Zahrai, S. Kondo, S. & Bark, F. H., Kondo, S. 2001b Effects of wall roughness in a gas-particle turbulent vertical channel flow. In Proceedings of the 2nd Int. Symp. on Turbulence and Shear Flow Phenomena, KTH, Stockholm, II, 117-122.

    Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A, 3, 1760-1765.

    Ghosal S., Moin, P. 1995 The basic equations for the large eddy simulation of turbulent flow in complex geometry. J. Comp. Phys. 118, 24-37.

    Gondret, P. Lance, M, Petit L. 2002 Bouncing motion of spherical particles in fluids. Phys Fluids, 14, 643-652.

    Gore, R. A. & Crowe, C. T. 1989 Effect of particle size on modulating turbulence intensity. Int. J. Multiphase Flow, 15, 279-285.

    Hetsroni, G. 1989 Particle-Turbulence interaction. Int. J. Multiphase Flow 15, 735-746.

    Hinze, J. O. 1975 Turbulence. McGraw-Hill.

    Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comp. Phys., 59, 308-323.

    Kim, J. & Moin, P. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid. Mech. 177, 133-166.

    Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid. Mech. 277, 109-134.

    Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Experiments in Fluids, 25, 143-159.

    Lataste, J. & Hullier, D. 1999 Is the shear lift force important? In proceedings of the third ASME/JSME joint fluid engineering conference FEDSM 99, San Francisco, California, USA, 595-601.

    Lesieur, M. & Metais, O. 1996 New trend in large-eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45-82.

    Lilly, D. K. 1992 A proposed modification of the Germano subgrid closure method. Phys. Fluids A, 4, 633-638.

    Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283-315.

    Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in non-uniform flow. Phys. Fluids, 26, 883-889.

    Mclaughlin, J. B. 1994 Numerical computation of particle-turbulence interaction. Int. J. Multiphase Flow, 20, 211-232.

    Mei, R., 1992, An approximate expression for the shear lift force on a spherical particle at finite Reynolds numbers. Int. J. Multiphase Flow, 18. 145-147.

    Michaelides, E. E. 1997 Review - The transient equation of motion for particles, bubbles, and droplets. Trans. ASME I: J. Fluid Engng., 119. 233-247.

    Morinishi Y, Lund T. S., Vasilyev, O. V., Moin P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comp. Phys. 143, 90-124.

    Murray, J. A., Piomelli, U. & Wallace, J. M. 1996 Spatial and temporal filtering of experimental data for a priori studies of subgrid-scale stresses. Phys. Fluids, 8, 1978-1980.

    Najjar, F. M. & Tafti, D. K. 1996 Study of discrete test filters and finite difference approximations for the dynamic subgrid-scale stress model. Phys. Fluids, 8, 1076-1088.

    Orlandi, O. 2000 Fluid flow phenomena, Kluwer Academic Publishers.

    Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids, 9, 3786-3807.

    Pan, Y., Tanaka, T. & Tsuji, Y. 2002 Turbulence modulation by dispersed solid particles in rotating channel flows. Int. J. Multiphase Flows, 28, 527-552.

    Pedinotti, S., Mariotti, G. & Banerjee, S. 1992 Direct numerical simulation of particle behaviour in the wall region of turbulent flows in horizontal channels. Int. J. Multiphase Flows, 18, 927-941.

    Piomelli, U. 1998 Large eddy simulation: present state and future directions. AIAA-Paper 98-0534.

    Rouson, D. W. & Eaton, J. K. 1994 Direct numerical simulation of turbulent channel flow with immersed particles. In Gas-Solid Flows FED-Vol. 185, 47-57. ASME.

    Rouson, D. W. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid. Mech., 428, 149-169.

    Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech., 22, 385-400.

    Saffman, P. G. 1968 Corrigendum to “The lift on a small sphere in a slow shear flow”. J. Fluid Mech., 31, 624.

    Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review, 91, 99-164.

    Sommerfeld, M. 1995 The importance of inter-particle collisions in horizontal gas-solid channel flows. In Gas-Solid Flows. FED-Vol. 228, 335-345. ASME

    Sommerfeld, M. & Huber, N. 1999 Experimental analysis and modeling of particle-wall collisions. Int. J. Multiphase flow, 25, 1457-1489.

    Sommerfeld, M. 2001 Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence. Int. J. Multiphase flow, 27, 1829-1858.

    Squire, K. D. & Eaton, J. K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A, 2, 1191-1203.

    Sundaram, S & Collins, L. R. 1999 A numerical study of the modulation of isotropic turbulence by suspended particles. J. Mech. Fluid 379 105-143.

    Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension I. Direct numerical simulation. J. Fluid Mech. 335, 75-109.

    Takagi, H., 1977 Viscous flow induced by slow rotating of a sphere. J. Phys. Soc. Jpn. 42, 319-325.

    Tanaka, T. & Tsuji, 1991 Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision. In Gas-Solid Flows. FED-Vol. 121, 123-128, ASME.

    Tanaka, T., Yamamoto, Y., Potthoff, M., Tsuji, Y., LES of gas-particle turbulent channel flow. In: Proceedings of 1997 ASME Fluid Engineering Division Summer Meeting, FEDSM97-3630, 1-5.

    Tsuji, Y. 1991 Review: Turbulence modification in fluid-solid flows. In Gas-Solid Flows (ed. D. E. Stock et al.) ASME-FED 110, 1-6.

    Tsuji, Y., Morikawa, Y. Tanaka, T., Nakatsukasa, N. & Nakatani, M. 1987 Numerical simulation of pneumatic conveying in a horizontal pipe. Int. J. Multiphase-flow, 13, 671-684.

    Van Driest, E. P. 1956 On the turbulent flow near a wall. J. Aero. Sci. 23, 1007-1010.

    Vincenzo, A., Piomelli, U. & Fiorotto, V. 1999 Effects of the subgrid scales on particle motion. Phys. Fluid, 11, 3030-3042.

    Wang, L. P. & Maxey, M. R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27-68.

    Wang, Q. & Squires, K. D. 1996 Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids, 8, 1207-1223.

    Yamamoto, Y., Tanaka, T. & Tsuji, Y. 1998 Effect of spatial resolution of LES on particle motion. In Proceedings of FEDSM’98 1998 ASME Fluids Engineering Division Summer Meeting. Washington, D. C. 1-8.

    Yamamoto, Y., Potthoff, M., Tanaka, T., Kajishima, T. & Tsuji, Y. 2001 Large-eddy simulation of turbulent gas-particle flow in a vertical channel; effect of considering inter-particle collisions. J. Fluid Mech., 442, 303-334.

    Yarin, L. P. & Hetsroni, G. 1994 Turbulence intensity in dilute two-phase flow – 3: The particles-turbulence interaction in dilute two-phase flow. Int. J. Multiphase Flow 20, 27-44.

    Yiming, L., Mclaughlin, J. B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden channel flow. Phys. Fluids, 13, 2957-2967.

    Yuan, Z. & Michaelides, E. E. 1994 Turbulence modulation in particulate flows – a theoretical approach. Int. J. Multiphase flow, 18, 779-785.

    Yuu, S. 1997 Effects of particle existences on low and high Reynolds number gas-particle jets. ISAC’97 High Performance Computing on Multiphase Flow, 67-73.

    Yuu, S., Nishikawa, H. & Umekage, T. 2001 Numerical simulation of air and particle motions in group-B particle turbulent fluidized bed. Powder Tech., 118, 32-44.

    Zahrai, S. Bark, F. H., Karlsson, R. I., 1995 On anisotropic subgrid modeling. Eur. J. Mech. B, 14, 459-486.

    Zang, Y., Street, R. L. & Koseff, J. R. 1993 A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A, 5, 3186-3196

    下載圖示 校內:立即公開
    校外:2003-07-14公開
    QR CODE