簡易檢索 / 詳目顯示

研究生: 方凱弘
Fang, Kai-Hung
論文名稱: 苯基異喹碄銥金屬錯合物於有機發光元件的應用
Application of Phenyl-Isoquinoline Iridium Complexes in the Organic Light-Emitting Diodes
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 147
中文關鍵詞: 磷光有機電激發光二極體
外文關鍵詞: Phosphorescence, OLEDs, Ir
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的目的在於研究與合成苯基異喹碄銥金屬錯合物,及將這些有機銥錯合物應用於有機電激發光紅光材料的應用上。此研究主要分為兩個部分:第一部分是利用有取代基的苯甲酸化合物與氨類 (amine) 縮合後,再以五氧化二磷 (P2O5) 在酸性條件下將化合物進行縮環反應,接著再利用二氧化錳 (MnO2) 將縮環後的化合物進行脫氫反應而得到最終產物“具有取代基的苯基異喹碄化合物”。第二部分則利用取得的各種不同取代基的苯基異喹碄化合物做為配位基,將其與銥金屬進行錯合反應而取得各種不同配位基的苯基異喹碄銥金屬錯合物。我們對這些銥錯合物進行了吸收波長、溶液態放光波長及做成有機發光元件的各種效能測試。實驗結果顯示,我們所合成的銥金屬錯合物的放光波長位於600 ~ 640 nm 之間,且在發光元件的應用上有不錯的發光效率。尤其是 (4’-opiq)2Ir(acac) 這個材料在11V 電壓操作下最大亮度可達32697 cd/m2,最大的能量效率 (Power efficiency, P. E.) 為6.58 lm/W,發光效率 (Luminous efficiency, L. E.) 為13.28 cd/A。這些銥錯合物具有被應用於有機電激發光材料的可能性。

     Organic Light-Emitting Diodes (OLEDs) have potential for application in the flat panel display, and have received vast attention. This work focuse on synthesizing various substituent groups on phenyl-isoquinoline, and a series of red phosphorescent materials based on iridium complexes with these phenyl isoquinoline derivative ligands.

     These iridium-phenyl isoquinoline complexes all have red emissions, and light-emitting devices based on these complexes all have good efficiencies.Especially, (4’-opiq)2Ir(acac) possesses the best efficiencies over the other iridium complexes. When operated at 11V, (4’-opiq)2Ir(acac) has a maximum luminescence about 32697 cd/m2, and a maximum power efficiency of 6.58 lm/W and a maximum luminous efficiency of 13.28 cd/A. The results suggest that these iridium complexes may serve as good red organic light-emitting materials.

    摘要 Abstract 誌謝 目錄 目錄………………………………………………………………………6 表目錄……………………………………………………………………8 圖目錄……………………………………………………………………9 名詞縮寫…………………………………………………………………12 第一章  緒論…………………………………………………………16 1.1 前言……………………………………………………………16 1.2 螢光 (Fluorescence) 與磷光 (Phosphorescence)……19 1.3 有機發光二極體 (OLEDs) 的簡介…………………………20 1.4 掺雜 (doping) 技術與掺雜物 (dopant)………………23 1.5 有機發光二極體 (OLEDs) 紅光材料的發展………………25 1.6 研究動機………………………………………………………29 第二章  相關實驗部份………………………………………………30 2.1 使用藥品………………………………………………………30 2.2 相關儀器操作…………………………………………………32 2.3 實驗部份………………………………………………………34 第三章  結果與討論…………………………………………………47 3.1 實驗結果與核磁共振光譜圖討論……………………………47 3.2 UV-Vis 吸收光譜……………………………………………57 3.3 Photoluminescence (PL) 放光光譜………………………63 3.4 循環伏安法 (Cyclic Voltammograms, CV) 和錯合物的能             階………………………………………………………………77 3.5 OLEDs 的製備…………………………………………………82 第四章  結論…………………………………………………………102 第五章  參考文獻……………………………………………………104 第六章  附錄…………………………………………………………112

    1. 顧鴻壽,光電有機電激發光顯示器技術及應用,新文京開發出版有限公司,台北縣,民90.
    2. Kelly, S. M., Flat Panel Displays: Advanced Organic Materials, MPG Books Ltd, Bodmin, Cornwall 2000.
    3. Nalwa H. S. and Rohwer L. S., Editor “Handbook of Luminescence, Display Materials, and Devices: Organic Light-Emitting Diodes”, American Scientific Publishers 2003.
    4. Nalwa H. S. and Rohwer L. S., Editor “Handbook of Luminescence, Display Materials, and Devices: Inorganic Display Materials”, American Scientific Publishers 2003.
    5. Nalwa H. S. and Rohwer L. S., Editor “Handbook of Luminescence, Display Materials, and Devices: Display Devices”, American Scientific Publishers 2003.
    6. Tang C. W. and VanSlyke S. A., Appl. Phys. Lett., 1987, 51, 913-915.
    7. Tang C. W., VanSlyke S. A. and Chen C. H., J. Appl. Phys., 1989, 65, 3610-3616.
    8. Vestweber H. and Rieβ W., Synth. Met., 1997, 91, 181-185.
    9. Riel H., Brütting W., Bererlein T., Haskal E., Müller P. and Riess W., Synth. Met., 2000, 111-112, 303-306.
    10. Zhilin Z., Xueyin J. and Shaohong X., Thin Solid Films, 2000, 363, 61-63.
    11. Jiang X., Liu Y., Song X. and Zhu D., Synth. Met., 1997, 87, 175-178.
    12. Pielichowski J., Chrzszcz R., Nizio S., Barta P. and Sanetra J., Synth. Met., 1998, 94, 123-125.
    13. Hanai N., Sumitomo M. and Yanag H., Thin Solid Films, 1998, 331, 106-112.
    14. Hung L. S., Tang C. W. and Mason M. G., Appl. Phys. Lett., 1997, 70, 152-154.
    15. Staudigel J., Stöβel M., Steuber F., Blässing J. and Simmerer J., Synth. Met., 2000, 111-112, 69-73.
    16. Heil H., Steiger J., Karg S., Gastel M., Ortner H., Seggern H. V. and Stöβel M., J. Appl. Phys., 2001, 89, 420-424.
    17. Era M., Tsutsui T. and Saito S., Appl. Phys. Lett., 1995, 67, 2436-2438.
    18. Aminaka E. I., Tsutsui T. and Saito S., J. Appl. Phys., 1996, 79, 8808-8815.
    19. Era M., Tsutsui T., Takehara K., Isomura K. and Taniguchi H., Thin Solid Films, 2000, 363, 229-231.
    20. Wenping H., Matsumura M., Wang M. and Jin L., Appl. Phys. Lett., 2000, 77, 4271-4273.
    21. Wang C., Jung G. Y., Hua Y., Pearson C., Bryce M. R., Petty M. C., Batsanov A. S., Goeta A. E. and Howard J. A. K., Chem. Mater., 2001, 13, 1167-1173.
    22. Yeh Y. R., Hsiao H. T. and Wu C. G., Synth. Met., 2001, 121, 1651-1652.
    23. Chen C. H., Klubek K. P. and Shi J., US. Patent No. 5908581, 1999.
    24. Chen C. H., Tang C. W., Shi J. and Klubek K. P., Thin Solid Films, 2000, 363, 327-331.
    25. Lin T. H., Iou C. Y., Wen S. W. and Chen C. H., Thin Solid Films, 2003, 441, 223-227.
    26. Berkovich E., Klein J., Sheradsky T., Silcoff E. R., Ranjit K. T., Willner T., Nakhmanovich G., Gorelik V. and Eichen Y., Synth. Met., 1999, 107, 85-91.
    27. Lin X. Q., Chen B. J., Zhang X. H., Lee C. S., Kwong H. L. and Lee S. T., Chem. Mater., 2001, 13, 456-458.
    28. Chiu C. W., Chow T. J., Chuen C. H., Lin H. M. and Tao Y. T., Chem. Mater., 2003, 15, 4527-4532.
    29. Suh M. C., Chin B. D., Kim M. H., Kang T. M. and lee S. T., Adv. Mater., 2003, 15, 1254-1258.
    30. Ostrowski J. C., Susumu K., Robinson M. R., Therien M. J. and Bazan G. C., Adv. Mater., 2003, 15, 1296-1300.
    31. Xue C. and Luo F. T., Tetrahedron, 2003, 59, 5193-5198.
    32. Huang T. H., Lin J. T., Tao Y. T. and Chuen C. H., Chem. Mater., 2003, 15, 4854-4862.
    33. Mitsuya M., Suzuki T., Koyama T., Shirai H., Taniguchi Y., Satsuki M. and Suga S., Appl. Phys. Lett., 2000, 77, 3272-3274.
    34. Tao X. T., Miyata S., Sasabe H., Zhang G. J., Wada T. and Jiang M. H., Appl. Phys. Lett., 2001, 78, 279-281.
    35. Picciolo L. C., Murata H. and Kafafi Z. H., Appl. Phys. Lett., 2001, 78, 2378-2380.
    36. Wolak M. A., Jang B. B., Palilis L. C. and Kafafi Z. H., J. Phys. Chem. B, 2004, 108, 5492-5499.
    37. Kim D. U., Paik S. H., Kim S. H. and Tsutsui T., Synth. Met., 2001, 123, 43-46.
    38. Hamada Y., Sano T., Fujii H., Nishio Y., takahashi H. and Shibata K., Jpn. J. Apply. Phys., 1996, 35, L1339-L1341.
    39. Baldo M. A., O’Brien D. F., Thompson M. E. and Forrest S. R., Phys. Rev. B, 1999, 60, 14422-14428.
    40. DePriest J., Zheng G. Y., Goswami N., Eichhorn D. M., Woods C. and Rillema D. P., Inorg. Chem., 2000, 39, 1955-1963.
    41. Li Y., Liu Y., Bu W., Lu D., Wu Y. and Wang Y., Chem. Mater., 2000, 12, 2672-2675.
    42. Fukuda Y., Watanabe T., Wakimoto T., Miyaguchi S. and Tsuchida M., Synth. Met., 2000, 111-112, 1-6.
    43. Chan S. C., M. Chan C. W., Wang Y., Che C. M., Cheung K. K. and Zhu N., Chem. Eur. J., 2001, 7, 4180-4190.
    44. Liu Y., Guo J., Feng J., Zhang H., Li Y. and Wang Y., Appl. Phys. Lett., 2001, 78, 2300-2302.
    45. Brooks J., Babayan Y., Lamansky S., Djurovich P. I., Tsyba I., Bau R. and Thompson M. E., Inorg. Chem., 2002, 41, 3055-3066.
    46. Cheng C. C., Yu W. S., Chou P. T., Peng S. M., Lee G. H., Wu P. C., Song Y. H. and Chi Y., Chem. Commun., 2003, 2628-2629.
    47. Wu P. C., Yu J. K., Song Y. H., Chi Y., Chou P. T., Peng S. M. and Lee G. H., Organometallics, 2003, 22, 4938-4946.
    48. Tsuzuki T., Shirasawa N., Suzuki T. and Tokito S., Adv. Mater., 2003, 15, 1455-1458.
    49. Sun P. P., Duan J. P., Lih J. J. and Cheng C. H., Adv. Funct. Mater., 2003, 13, 683-691.
    50. Li F., Zhang M., Cheng G., Feng J., Zhao Y., Ma Y., Liu S. and Shen J., Appl. Phys. Lett., 2004, 84, 148-150.
    51. Lee T., Jung I., Song K. H., Lee H., Lee B. J., Pak J. Y., Lee C., Kang S. O. and Ko J., Organometallics, 2004, 23, 5280-5285.
    52. Gong X., Moses D., Heeger A. and Ziao S., J. Phys. Chem. B, 2004, 108, 8601-8605.
    53. Lee C. L., Das R. R. and Kim J. J., Chem. Mater., 2004, 16, 4642-4646.
    54. Ren X., Li J., Holmes R. J., Djurovich P. I., Forrest S. R. and Thompson M. E., Chem. Mater., 2004, 16, 4743-4747.
    55. Chang W. C., Hu A. T., Duan J. P., Rayabarapu D. K. and Cheng C. H., J. Organo. Chem., 2004, 689, 4882-4888.
    56. Che C. M., Chan S. C., Xiang H. F., Chan M. C. W., Liu Y. and Wang Y., Chem. Commun., 2004, 1484-1485.
    57. Furuta P. T., Deng L., Garon S., Thompson M. E. and Fréchet J. M., J. Am. Chem. Soc., 2004, 126, 15388-15389.
    58. Lee J., Liu Q. D., Bai D. R., Kang Y., Tao Y. and Wang S., Organometallics, 2004, 23, 6205-6213.
    59. De Silva C. R., Wang J., Carducci M. D., Rajapakshe S. A. and Zheng Z., Inorg. Chim. Acta, 2004, 357, 630-634.
    60. Yeh S. J., Wu M. F., Chen C. T., Song Y. H., Chi Y., Ho M. H., Hsu S. F. and Chen C. H., Adv. Mater., 2005, 17, 285-289.
    61. Kwon T. H., Cho H. S., Kim M. K., Kim J. W., Kim J. J., Lee K. H., Park S. J., Shin I. S., Kim H., Shin D. M., Chung Y. K. and Hong J. I., Organometallics, 2005, 24, 1578-1585.
    62. Tian L., Zhang W., Yang B., Lu P., Zhang M., Lu D., Ma Y. and Shen J., J. Phys. Chem. B, 2005, 109, 6944-6947.
    63. Chai S. Y., Zhou R., An Z. W., Kimura A., Fukuno K. and Matsumura M., Thin Solid Films, 2005, 479, 282-287.
    64. Zhang M., Lu P., Wang X. M., Xia H., Zhang W., Yang B., Liu L. L., Yang L., Yang M., Ma Y. G., Feng J. K. and Wang D. J., Thin Solid Films, 2005, 477, 193-197.
    65. Jia W. L., Feng X. D., Bai D. R., Lu Z. H., Wang S. and Vamvounis G., Chem. Mater., 2005, 17, 164-170.
    66. Hwang F. M., Chen H. Y., Shen P., Liu C. S., Chi Y., Shu C. F., Wu F. I., Chou P. T., Peng S. M. and Lee G. H., Inorg. Chem., 2005, 44, 1344-1353.
    67. Lin B. C., Cheng C. P., You Z. Q. and Hsu C. P., J. Am. Chem. Soc., 2005, 127, 66-67.
    68. Kim J. I., Shin I. S., Kim H. and Lee J. K., J. Am. Chem. Soc., 2005, 127, 1614-1615.
    69. Baldo M. A., O’Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E. and Forrest S. R., Nature (London), 1998, 395, 151-154.
    70. O’Brien D. F., Baldo M. A., Thompson M. E. and Forrest S. R., Appl. Phys. Lett., 1999, 74, 442-444.
    71. JABBOUR G. E., Wang J. F., KIPPELEN B. and PEYGHAMBARIAN N., Jpn. J. Appl. Phys., 1999, 38, L1553-L1555.
    72. Hu W., MATSUMURA M., Wang M. and Jin L., Jpn. J. Appl. Phys., 2000, 39, 6445-6448.
    73. Hu W., MATSUMURA M., Wang M. and Jin L., Appl. Phys. Lett., 2000, 77, 4271-4273.
    74. Huang L., Wang K. Z., Huang C. H., Li Fu-You and Huang Y. Y., J. Mater. Chem., 2001, 11, 790-793.
    75. Ohmori Y., Kajii H., Sawatani T., Ueta H. and Yoshino K., Thin Solid Films, 2001, 393, 407-411.
    76. Adachi C., Baldo M. A., Forrest S. R., Lamansky S., Thompson M. E. and Kwong R. C., Appl. Phys. Lett., 2001, 78, 1622-1624.
    77. Curry R. J. and Gillin W. P., Synth. Met., 2000, 111-112, 35-38.
    78. Xia H., Zhang C., Lin X., Qiu S., Lu P., Shen F., Zhang J. and Ma Y., J. Phys. Chem. B, 2004, 108, 3185-3190.
    79. Slinker J. D., Gorodetsky A. A., Lowry M. S., Wang J., Parker S., Rohl R., Bernhard S. and Malliaras G. G., J. Am. Chem. Soc., 2004, 126, 2763-2767.
    80. Li F., Zhang M., Feng J., Cheng G., Wu Z., Ma Y., Liu S., Sheng J. and Lee S. T., Appl. Phys. Lett., 2003, 83, 365-367.
    81. Tung Y. L., Wu P. C., Liu C. S., Chi Y., Yu J. K., Hu Y. H., Chou P. T., Peng S. M, , Lee G. H., Tao Y., Carty A. J., Shu C. F. and Wu F. I., Organometallics, 2004, 23, 3745-3748.
    82. S. lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau and M. E. Thompson, Inorg. Chem., 2001, 40, 1704-1711.
    83. Hay P. J., J. Phys. Chem. A, 2002, 106, 1634-1641.
    84. Okada S., Iwawaki H., Furugori M., Kamatani J., Igawa S., Moriyama T., Tsuboyama S., Miura A., Takiguchi T., Mizutani H., SID 02 DIGEST, 2002, 1360-1363.
    85. Su Y. J., Huang H. L., Li C. L., Chien C. H., Tao Y. T., Chou P. T., Datta S. and Liu R. S., Adv. Mater., 2003, 15, 884-888.
    86. Laskar I. R. and Chen T. M., Chem. Mater., 2004, 16, 111-117.
    87. Huang W. S., Lin J. T., Chien C. H., Tao Y. T., Sun S. S. and Wen Y. S., Chem. Mater., 2004, 16, 2480-2488.
    88. Niu Y. H., Chen B., Liu S., Yip H., Bardecker J., Jen A. K. Y., Kavitha J., Chi Y., Shu C. F., Tseng Y. H. and Chien C. H., Appl. Phys. Lett., 2004, 85, 1619-1621.
    89. Y. Hamada, IEEE Transactions on Electronics Devices, 1997, 44, 1208.
    90. 遠藤潤, 城戶淳二, 第44回應用物理學關係連合講演會, 1997, 299-NK-1, 1151.
    91. Kang T. S., Harrison B. S., Foley T. J., Knefely A. S., Boncella J. M., Reynolds J. R. and Schanze K. S., Adv. Mater., 2003, 15, 1093-1097.
    92. Baldo M. A., Lamansky S., Burrows P. E., Thompson M. E. and Forrest S. R., Appl. Phys. Lett., 1999, 75, 4-6.
    93. Yang C. H., Tai C. C. and Sun I W., J. Mater. Chem., 2004, 14, 947-950.
    94. Nonoyama M., Bull. Chem. Soc. Jpn., 1974, 47, 767.
    95. Pommerehne J., Guss W., Mahrt R. F., Bassler H., Proseh M. and Daub J., Adv. Mater., 1995, 7, 551-554.
    96. Koepp H. M., Wendt H. and Strehlow H. Z., Electrochem., 1960, 64, 483.
    97. Burrows P. E., Shen Z., Bulovic V., McCarty D. M. and Forrest S. R., J. Appl. Phys., 1996, 79, 7991-8006.
    98. Meyer T. J., Pure. Appl. Chem., 1986, 58, 1193.
    99. Casper J. V. and Meyer T. J., J. Phys. Chem., 1983, 87, 952-957.

    下載圖示 校內:2025-07-25公開
    校外:2025-07-25公開
    QR CODE