簡易檢索 / 詳目顯示

研究生: 劉旂甫
Liu, Chi-Fu
論文名稱: 水及正丁醇蒸氣在TiO2(6-12nm)與甘露糖(8-25nm)帶電與中性微粒上之非均勻相核凝
Heterogeneous Nucleation of water and n-Butanol Vapor on Charged/Neutral Nanoparticles of TiO2(6-12nm) and Mannose (8-25nm)
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 152
中文關鍵詞: 非均勻相核凝奈米微粒臨界過飽和度
外文關鍵詞: heterogeneous nucleation, nanoparticles, critical supersaturation
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米微粒因為粒徑很小而可能顯現出與巨觀材料性質不同的效應。在大氣中因為天然及人為因素亦產生相當多的奈米微粒,成為大氣氣膠中重要成分。本研究以電噴霧法製備不可溶TiO2 以及可溶甘露糖(D-Mannose)奈米微粒並以流動型雲霧室探討水及正丁醇蒸氣中所引起之非均勻相核凝機構。
    TiO2微粒與甘露糖微粒無論在過飽和水或正丁醇蒸氣中,臨界過飽和度皆隨粒徑減小而增大。定性上與理論計算之趨勢相符合,但定量上仍有一段差距。有關電荷效應方面,TiO2和甘露糖微粒在水及正丁醇蒸氣中,不帶電微粒所需之臨界過飽和度皆大於帶電微粒,定性上和理論符合。
    在電荷極性效應方面,不可溶TiO2帶單一負電荷微粒在水蒸氣中臨界過飽和度值較帶單一正電荷低;在正丁醇蒸氣中則相反,其結果定性上皆與理論符合。可溶甘露糖微粒帶單一負電荷微粒在正丁醇蒸氣中臨界過飽和度值較帶單一正電荷低,與理論預測矛盾。
    至於可溶性微粒與不可溶性微粒比較方面,實驗結果與理論相符,可溶性微粒臨界過飽和度皆小於不可溶性微粒。
    實驗值和理論值在定性上有誤差,推測造成差別之原因可能是受表面張力影響所致或是現有之核凝理論尚待進一步修正。

    Nanoparticles may have a property different from the bulk due to such a small size. Recently, the subjects concerning their production, properties and applications have received extensively attention and been intensively investigated. On the other hand, nanoparticles are generated due to natural and anthropogenic activities, and become an important component of the atmospheric aerosols. A systematic study on the heterogeneous nucleation of water and n-butanol vapor on neutral and various single-charged nanoparticles of TiO2(6nm-30nm)/Mannose(8nm-25nm) is performed employing an electrospraying device and a flow cloud chamber (FCC).
    The results show that the experimental Scr decreases with increasing particle size, at a rate in reasonable agreement with that predicted by Fletcher’s version of Volmer’s theory of heterogeneous nucleation.
    The Scr of neutral and charged particles are slightly different. On the other hand, a charged effect on Scr is observed. The condensation on single- charged positive and single-charged negative particles are also examined. N-butanol vapor is more readily to condense on single-charged positive TiO2 particles and water vapor condense on single-charged negative TiO2 particles, at a rate in reasonable agreement with that predicted by Theory.
    And N-butanol vapor is more readily to condense on single-charged negative Mannose particles. It is variance with theoretical predicted.
    Solube particle Scr is smaller than insoluble particle Scr, in agreement with the theoretical prediction.
    To make the theoratical curve agree well with the experimental data, a lower surface tension was required. However, this is inconsistent with the unknown curvature dependency of the surface tension. The discrepancy between the experimental and theoretical critical supersaturation values cannot be fully accounted for by the existing theory concerning the curvature-dependent surface tension yet.

    目錄 中文摘要…………………………………………………Ⅰ 英文摘要…………………………………………………Ⅱ 目錄……………………………………………………ⅠⅤ 圖目錄…………………………………………………ⅤⅢ 表目錄…………………………………………………ⅩⅢ 符號說明………………………………………………ⅩⅤ 第一章 緒言 1 1.1簡介……………………………………………………1 1.2非均勻相核凝文獻回顧………………………………4 1.3蒸氣於帶電微粒上之核凝……………………………9 1.4研究目標………………………………………………10 第二章 理論分析 12 2.1核凝理論………………………………………………12 2.2不可溶中性微粒ΔG之計算……………………………14 2.2.1不可溶帶電微粒ΔG之計算…………………………20 2.3可溶性微粒ΔG之計算…………………………………22 2.3.1可溶性微粒尚未完全溶解…………………………23 2.3.2微粒已完全溶解……………………………………24 2.3.3可溶性帶電微粒ΔG之計算…………………………25 2.3.3.1 可溶微粒尚未完全溶解……………………… 25 2.3.3.2可溶微粒已完全溶解……………………………26 2.4雲霧室中溫度與濃度分佈……………………………28 2.5電噴霧法(electrospray)……………………………32 第三章 實驗系統與操作 36 3.1實驗系統………………………………………………36 3.1.1微粒產生器…………………………………………40 3.1.2電力篩選器…………………………………………44 3.1.3微粒電荷中和器……………………………………48 3.1.4電場收集器…………………………………………49 3.1.5流動型雲霧室………………………………………51 3.1.6超細微粒凝結核計數器……………………………54 3.2實驗步驟………………………………………………56 3.2.1電噴霧系統操作……………………………………56 3.2.2去除效率實驗………………………………………59 3.3理論模擬臨界過飽和度………………………………66 第四章 實驗結果與討論 67 4.1電噴霧法製備微粒之粒徑分析………………………67 4.1.1不可溶微粒(TiO2)之粒徑分佈……………………68 4.1.2可溶微粒(甘露糖)之粒徑分佈……………………69 4.1.3微粒之TEM分析…………………………………… 69 4.2空白實驗………………………………………………72 4.3不可溶微粒之去除效率實驗與何凝現象探討………77 4.3.1不可溶不帶電微粒實驗值與理論值之比較………86 4.3.2不可溶微粒之電荷效應對臨界過飽和度之影響 ………………………………………………………93 4.3.3不可溶微粒之電荷極性效應對臨界過飽和度之 影響………………………………………………………105 4.4水和正丁醇在不可溶微粒對臨界過飽和度之影響 ……………………………………………………………112 4.5可溶微粒之去除效率實驗與何凝現象探討………114 4.5.1可溶不帶電微粒實驗值與理論值之比較………118 4.5.2可溶微粒之電荷效應對臨界過飽和度之影響 ……………………………………………………123 4.5.3可溶微粒之電荷極性效應對臨界過飽和度之影 響…………………………………………………127 4.6可溶性與不可溶性微粒之臨界過飽和度比較……132 4.7表面張力對核凝速率之影響………………………136 第五章 結論 144 參考文獻 147

    參考文獻

    1.N.H.Fletcher,“The Physics of Rainclouds”,1st Ed.,( Cambridge University Press), p.390 (1969).
    2.Pruppacher, H.R., and Klett, J.D., “Microphysics of Clouds and Precipitation”, (Reidel, Holland), p714(1980)
    3.Chin-Cheng Chen and Chun-Ju Tao, J.Chem. Phys.112,15(2000)
    4.W. C. Hinds, “Aerosol Techmology”, (Wiley, New York), (1982).
    5.M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi ,J. Chem. Mater.8, 173. (1996)
    6.C.H.Chen, M. H. J. Emond, E. M. Kelder, B. Meester and J. Schoonman, J. Aerosol Sci. 30, 7, 959(1999).
    7.Zeleny, Z. Proc. Camb. Phil. Soc. 18, 71(1915).
    8.Stanley L. Kaufman, J. Aerosol Sci. 29, 5/6 , 537,(1998).
    9.K.Tang and A. Gomez , J. Aerosol Sci. 25, 6 ,1237,(1994).
    10.Stanley L. Kaufman, Analytical Chemistry News & Features.4, 6, 386A.
    11.M. Cloupeau and B. Prunet-Foch, Journal of Electrostatics, 22, 135(1898).
    12.Da-Ren Chen,*David Y. H. Pui* and Stanley L. Kaufman, J. Aerosol Sci,26,6.963(1995).
    13.Volmer, M., and Weber, A., Z. Physik. Chem. (Leipzig) 119, 227(1926)
    14.Fletcher, N. H, J. Chem. Phys. 29, 572-576 (1958).
    15.Lamer, V. K. and Gruen ,R., Trans. Faraday Soc. 48, 410 (1952).
    16.Twomey, S., J. Chem. Phys. 30, 941 (1959).
    17.Koutsky, J. A., Walton, A. G., and Baer, E., Surface Sci. 3,165 (1965).
    18.Jameson, G. J., and Del Cerro, M. C., J. Chem. Soc. Faraday Trans.(1976)
    19.Saville, G., J. Chem. Soc. Faraday Trans. II 73, 1122 (1977).
    20.White, L. R., J. Chem. Soc. Faraday Trans. I 73, 390 (1977).
    21.Lazaridis, M., J. Colloid Interface Sci. 155, 386(1993)
    22.C. L. Briant and P.Mirabel, “Vapor Nucleation on Ions,” J. Chim. Phys. Physicochim. Biol., 83, 219(1986)
    23.S. H. Suck, “Change of Free Energy in Heteromolecular Nucleation: Electrostatic Energy Contribution,” J. Chem. Phys. 75, 5090(1981)
    24.I. Kusaka, Z.G. Wang and J.H.Seinfeld, “Ion-induced Nucleation: A Density Function Approach,” J. Chem. Phys., 102, 913(1995)
    25.A. Bateni, A. Ababneh, J.A.W. Elliot, A.W. Neumann and A.Amirfazli, “Effect of Gravity and electric field on shape and surface tension of drops,” Advanced in space Research, 36, 64-69(2005)
    26.A. Bateni, S. Laughton, H. Tavana, S.S. Susnar, A.Amirfazli and A.W. Neumann, “Effect of electric field on contact angle and surface tension of drops,” Journal of Colloid and Interface Science, 283, 215-222(2005)
    27.黃崇銓, “正丁醇蒸汽在不溶性無機次微米微粒上之非均勻相核凝現象 ”, 碩士論文,國立成功大學化工系(1996)
    28.C.T.R Wilson, Phil. Trans. A,189,265(1897).
    29.J.J. Thomson, 3rd.Ed.,Vol1 (Cambridge University, Cambridge, 99, 320(1928)
    30.L. B. Loeb, A.F.Kip and A.W.Einarsson, J.Chem, Phys., 6, 265(1938).
    31.F. He, P.K. Hopke, J. Chen. Phys.,99,9972(1993).
    32.J.L. Katz, J.A. Fisk and V.M. Chakarov, J. Chem. Phys,101,2309(1994).
    33.J.M.Mäkelä, A. Ukkonen, V. Jokinen, and J. Keskunen, J. Chem. Phys.,105,1562(1996).
    34.T. Seto, K. Okuyama,L. de Juan and F. de la Mora, J. Chem. Phys,107,1576(1997)
    35.W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY. (1955)
    36.蔡聞庭,”正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2000)
    37.鄭秀津,”水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2002)
    38.林佳德,”正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝” ,碩士論文,國立成功大學化工系,(2004)
    39.沈于安,”正丁醇蒸氣在SiO2(10nm-6nm)與鼠李糖(25nm-8nm)”微粒上之非均勻相核凝
    40.M. Volmer, ”Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden (1939).
    41.K. C. Russell, J. Chem. Phys., 50, 1809(1969)
    42.陶君儒,”水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸次微米微粒上之非均勻相核凝現象”,博士論文,國立成功大學化工系,(2000).
    43.C. H. Chen,*M.H.J.Emond et al ,J. Aerosol Sci.30,7,959(1999).
    44.White, L. R., J. Chem. Soc. Faraday Trans. I 73, 390 (1977).
    45.C.C. C. Chen, L. C. Hung, and H. K. Hsu , J. Colloid Interface Sci., 157,465 (1993).
    46.Katz, J.L. and Ostermier, B.J., “Diffusion cloud chamber investigation of homogeneous nucleation”, J. Chem. Phys., 47, p.478(1967)
    47.Katz, J.L. and Mirabel, P., “Calculation of supersaturation profiles in thermal diffusion cloud-chamber”, J. Atmos. Phys., 32, p.646(1975)
    48.M. Cloupeau and B. Prunet-Foch (1988), Journal of Electrostatics, 22,135(1989).
    49.J. Rosell-Llompart and J. Fernandez De La Mora(1994), J. Aerosol Sci. 25, 6 ,1093, 1994.
    50.M. Cloupeau and B. Prunet-Foch (1994), J. Aerosol Sci. 25, 6,p. 1021, 1994.
    51.W. Franklin Smyth, “Trends in analytical chemistry”, 1999, V.18, n.5, p.335
    52.S. L. Kaufman, “Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular” Special Issue on Ion Formation Mechanisms in Electrospray, ed. S. Rutan and J. Fenn(1999).
    53.R.P.A.Hartman, D.J.Brunner, D.M.A.Camelot, J.C.M.Marijnissen and B.Scarlett, J.Aerosol Sci.,2000,31,1,65.
    54.陳彥宇,”電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝”,碩士論文,國立成功大學化工系,(2003).
    55.許豪仁,”正丁醇蒸汽在味精與乳糖次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系,(1997).
    56.Model 3936 SMPS (Scanning Mobility Particle Sizer) Instruction Manual, TSI Inc. (2002).
    57.Model 3080, Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
    58.Model 3071A Electrostatic Classifier, TSI company
    59.Model 3077 Aerosol Neutralizer, TSI company
    60.郭明升,”水蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”,碩士論文,國立成功大學化工系,(1995).
    61.C.C. C. Chen, L. C. Hung, and H. K. Hsu , J. Colloid Interface Sci., 157,465 (1993)
    62.J. L. Katz,”Condensation of a Supersaturated Vapor, I. “The homogenepus Nucleation of the n-Alkanes”,J. Chem. Phys.,52,4733(1970).
    63.Model 3025A, Ultrafine Condensation particle Counter Instruction Manual, TSI Inc.(2002)
    64.Model 3934 Scanning Mobility Particle Sizer,TSI company.
    65.C.C. Chen, M.S. Guo, Y.J. Tsai, and C.C. Huang, ”Heterogeneous Nucleation of Water-Vapor on Submicrometer Particles of SiC、SiO2 and Naphthalene,” J. Colloid Interface Sci., 198, 354(1998)
    66.R.J. Good, J.Phys. Chem.,61,810(1957)
    67.H.Stephen,T.Stephen ,”Solubilities of Inorganic and Organic Compounds ,”p.1975,pergamon Press.
    68.M. Sato, Naoya Kudo, and Masahiro Saito“Surface Tension Reduction of Liquid By Applied Electric Field Using Vibrating Jet Method,” p294, vol.34, IEEE Press.(1998)

    下載圖示 校內:2007-07-27公開
    校外:2007-07-27公開
    QR CODE