簡易檢索 / 詳目顯示

研究生: 蔡富任
Tsai, Fwu-Rung
論文名稱: 以分子動力學模擬內嗎啡肽-二型分子其C端官能基經聯胺與甲基脂修飾後之結構與活性關係
Structure-Activity Relationships of Endomorphin-2 with Hydrazine Group and Methyl Ester Modifications at C-terminus by Molecular Dynamics Simulations
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 153
中文關鍵詞: 內嗎啡肽-二型分子結構-活性關係奧斯汀模型計算分子動力學模擬
外文關鍵詞: Endomorphin-2, Structure-Activity Relationships, Austin Model 1 Calculation, Molecular Dynamics Simulation
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究內嗎啡肽-二型分子(H-Tyr-Pro-Phe-Phe-NH2,EM-2)及其C端官能基經聯胺(CONHNH2)與甲基脂(COOMe)修飾後的類似物分子,並觀察這三種分子間(總稱:EM-2s)的結構-活性關係。這些C端修飾物在受體結合試驗中已被證實對μ型阿片受體除了能保留相同的親和力外,更增加了對受體的選擇性。本文主要的目的是藉由芳香環的側鏈構形來討論這些修飾後的EM-2分子是如何更具有活性。首先,將EM-2s分子置於真空環境中並利用半經驗的奧斯汀模型計算來進行局部構形收尋,再針對Tyr1-Pro2胺基酸鍵結部份獲得含順式/逆式兩種組態的低能量構形,這些構形將當作分子動力學模擬的初始結構,在水溶液的環境中進行20奈秒的模擬。現階段的研究成果,我們發現C端修飾對EM-2分子的影響主要在芳香環的側鏈構形(χ1),但在背骨的扭轉角方面則無太大變化。針對側鏈構形部分,我們利用前人所提出的一些活性側鏈構形資訊來描述EM-2s分子對μ型阿片受體其選擇性的關係。從單一側鏈構形的分析,利用含活性側鏈構形準則來描述μ型阿片受體似乎有點不明確,因此我們更進一步利用活性側鏈構形組合分析來描述順式與逆式組態的EM-2s分子的結構-活性關係。關於這些活性側鏈構形組合,我們以[Tyr1— Phe3—Phe4]的型態來表示EM-2分子活性側鏈構形的組合,包含:[trans-trans-g(-)]和[g(-)-trans-g(-)]兩種組合。其結果顯示逆式組態的EM-2s分子比順式組態的EM-2s分子可能還要適合與μ型阿片受體產生鍵結,且C端官能基經修飾過後將明顯增加活性的側鏈構形組合。也就是:類似物2>類似物3>內嗎啡肽-二型分子。因此,我們推論當EM-2s分子呈現逆式組態時對μ型阿片受體將可能有較高的親合性或選擇性。

    The structure-activity relationships of the endomorphin-2 (H-Tyr1-Pro2-Phe3-Phe4-NH2, EM-2) and two modified analogues (EM-2s) with hydrazine group (-CONHNH2, analogue 2) and methyl ester (-COOMe, analogue 3) at the C-terminus have been investigated in this study. These C-terminal modified analogues had been proven in receptor binding assays that conserved the binding affinities and had higher selectivity to μ-opioid receptor (MOR). The main purpose of this study is focused on explaining how the EM-2 with the C-terminal modifications are more bioactive by analyzing the conformation of aromatic side-chain. The local conformational search of EM-2s were performed by Semi-Empirical Austin Model 1 calculation in vacuo, and containing the cis/trans isomers with the Tyr1-Pro2 peptide bond were obtained in a low-energy conformers, which were selected as the initial structures for molecular dynamic simulations in aqueous solution with a timecourse of 20 ns. In current study, we found the effect of the C-terminal modifications was mainly influenced on the rotamer (χ1) of the aromatics, but slightly affect on the dihedral angles of backbone. For side-chain rotamer analysis, we utilized the bioactive χ1 conformations that were mentioned in previous studies to describe the selectivity between the EM-2s and MOR. From the analysis of individual side-chain conformation, it seemed a criterion to determine the conformational bioactivity toward to MOR is clearly insufficient. Thus, we have further employed the bioactive rotamer- combination approach to examine the characteristic of SAR for cis-/trans-EM-2s. Those bioactive conformations can generally be classified into two conformer-combinations expressed in [Tyr1-Phe3-Phe4] format: [trans-trans-g(-)] and [g(-)-trans-g(-)]. The results show that the trans-EM-2s are more suitable than cis-EM-2s for MOR binding, and the modifications at the C-terminus functional group would increase the bioactive rotamer-combination conformations. i.e. analogue 2 (33.92%) > analogue 3 (26.67%) > EM-2 (21.57%) for trans isomers. Thus, we demonstrated that the trans-EM-2s possess higher binding affinity and selectivity to MOR.

    中文摘要.................................................II Abstract.................................................IV 誌 謝..................................................VI 目 錄.................................................VII 表 目 錄.................................................X 圖 目 錄................................................XII 符 號..................................................XV 第一章 緒 論...........................................1 1.1. 前言與背景介紹...................................1 1.1.1. 緣 由...........................................1 1.1.2. 阿片受體簡介.....................................2 1.1.3. 阿片受體的配體...................................6 1.1.4. 內源性阿片配體的發現.............................9 1.1.5. 內嗎啡肽分子之生理學探討及其鎮痛機制............13 1.1.6. 阿片類物質藥理性質鑑定方法......................25 1.1.7. 內嗎啡肽-二型分子之學術地圖整理.................30 1.2. 內嗎啡肽分子之文獻回顧..........................37 1.2.1. 順式與逆式組態結構的活性探討....................37 1.2.2. 分子內環-環配對作用力與氫鍵作用力之討論.........40 1.2.3. 含活性的芳香環側鏈構形之探討....................43 1.2.4. C端官能基修飾對活性結構的影響...................45 1.2.5. 以分子動力學研究內嗎啡肽分子之回顧..............46 1.3. 本文研究動機與目的..............................48 1.4. 本論文架構......................................50 第二章 分子模型建構流程及模擬分析方法..................52 2.1. RCSB網路資料庫..................................52 2.2. 物理模型建構....................................53 2.3. 如何取得內嗎啡肽-二型分子的初始結構?...........55 2.4. PRODRG2 Server-線上格式轉換....................58 2.5. 分子動力學模擬..................................60 2.6. 常見的構形特徵分析..............................68 第三章 模擬結果與討論..................................83 3.1. 內嗎啡肽-二型分子之初始結構與能量曲面圖.........83 3.2. 進行模擬結果與NMR實驗比較.......................85 3.3. 討論內嗎啡肽-二型分子之結構穩定性...............89 3.3.1. 藥物分子之能量分析..............................89 3.3.2. 背骨結構分析....................................90 3.3.3. 環-環配對作用力................................100 3.4. 討論芳香環活性側鏈構形.........................102 3.4.1. 單一側鏈構形分析...............................102 3.4.2. 二重側鏈構形組合分析...........................105 3.4.3. 三重側鏈構形組合分析...........................114 第四章 結 論.........................................119 第五章 未來發展與建議.................................121 參考文獻................................................123 附錄 A. 相關參數設定....................................144 附錄 B. 分子對接與複合物結構之電荷分佈探討..............147 作者自述................................................153

    [1] J. Hughes, T.W. Smith, H.W. Kosterlitz, L.A. Fothergill, B.A. Morgan and H.R. Morris, “Identification of two related pentapeptides from the brain with potent opiate agonist activity,” Nature, Vol. 258, pp. 577-580, 1975.
    [2] A. Mansour and S.J. Watson, Anatomical distribution of opioid receptors in mammalians, A. Herz, H. Akil, E.J. Simon (Eds.), In: Handbook of Experimental Pharmacology, Vol. 104/I, pp. 79-106, Berlin: Springer-Verlag, 1993.
    [3] G. Wittert, P. Hope and D. Pyle, “Tissue distribution of opioid receptor gene expression in the rat,” Biochemical and Biophysical Research Communications, Vol. 218, pp. 877-881, 1996
    [4] L.M. Harrison, A.J. Kastin and J.E. Zadina, “Opiate tolerance and dependence: receptors, G-proteins, and antiopiates,” Peptides, Vol. 19, pp. 1603-1630, 1998.
    [5] B.L. Kieffer, “Opioids: first lessons from knockout mice,” Trends in Pharmacological Sciences, Vol. 20, pp. 19-26, 1999.
    [6] J.A. Clark, L. Liu, M. Price, B. Hersh, M. Edelson and G.W. Pasternak, “Kappa opiate receptor multiplicity: evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 subtype,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 251, pp. 461-468, 1989.
    [7] 謝啟文 (2004)。神經肽。上海市:復旦大學出版社。ISBN:7-309-03876-2/R.830。
    [8] C.J. Evans, D.E. Keith, H. Morrison, K. Magendzo and R.H. Edwards, “Cloning of a delta opioid receptor by functional expression,” Science, Vol. 258, pp. 1952-1955, 1992.
    [9] B.L. Kieffer, K. Befort, C. Gaveriaux-Ruff and C.G. Hirth, “The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, pp. 12048-12052, 1992.
    [10] Y. Chen, A. Mestek, J. Liu, J.A. Hurley and L. Yu, “Molecular cloning and functional expression of a mu-opioid receptor from rat brain,” Molecular Pharmacology, Vol. 44, pp. 8-12, 1993.
    [11] M. Minami, T. Toya, Y. Katao, K. Maekawa, S. Nakamura, T. Onogi, S. Kaneko and M. Satoh, “Cloning and expression of a cDNA for the rat kappa-opioid receptor,” FEBS Letters, Vol. 329, pp. 291-295, 1993.
    [12] G. Subramanian, M.G. Paterlini, P.S. Portoghese and D.M. Ferguson, “Molecular docking reveals a novel binding site model for fentanyl at the mu-opioid receptor,” Journal of Medicinal Chemistry, Vol. 43, pp. 381-391, 2000.
    [13] W.C. Stevens, R.M. Jones, G. Subramanian, D.M. Ferguson and P.S. Portoghese, “Potent and selective indolomorphinan antagonists of the kappa-opiod receptor,” Journal of Medicinal Chemistry, Vol. 43, pp. 2759-2769, 2000.
    [14] T.G. Metzger, M.G. Paterlini, P.S. Portoghese and D.M. Ferguson, “Application of the message-address concept to the docking of naltrexone and selective naltrexone-derived opioid antagonists into opioid receptor models,” Neurochemica Research, Vol. 21, pp. 1287-1294, 1996.
    [15] L. Gentilucci and A. Tolomelli, “Recent advances in the investigation of the bioactive conformation of peptides active at the mu-opioid receptor. conformational analysis of endomorphins,” Current Topics in Medicinal Chemistry, Vol. 4, pp. 105-121, 2004.
    [16] A. Janecka, J. Fichna and T. Janecki, “Opioid receptors and their ligands,” Current Topics in Medicinal Chemistry, Vol. 4, pp. 1-17, 2004.
    [17] J.M. Gulland and R. Robinson, “The morphine group. part I. A, discussion of the constitutional problem,” Journal of Chemical Society, Vol. 123, pp. 980-998, 1923.
    [18] A.E. Takemori and P.S. Portoghese, “Evidence for the interaction of morphine with kappa and delta opioid receptors to induce analgesia in beta-funaltrexamine-treated mice,” The Journal of Pharmacology and Experimental Therapeutics, Vol. 243, pp. 91-94, 1987.
    [19] A. Misicka, “Peptide and nonpeptide ligands for opioid receptors,” Acta Poloniae Pharmaceutica, Vol. 52, pp. 349-363, 1995.
    [20] H. Blumberg and H.B. Dayton, “Naloxone, naltrexone, and related noroxymorphones,” Advances in Biochemical Psychopharmacology, Vol. 8, pp. 33-43, 1973.
    [21] J. Magnan, S.J. Paterson, A. Tavani and H.W. Kosterlitz, “The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties,” Naunyn-Schmiedeberg's Archives of Pharmacology, Vol. 319, pp. 197-205, 1982.
    [22] H.J. Teschemacher, Atypical opioid peptides, In A. Herz, H. Akil, E.J. Simon (Eds.), In: Handbook of Experimental Pharmacology, Vol. 104/I, pp. 499-528. Berlin:Springer-Verlag, 1993.
    [23] V. Hoellt, “Multiple endogenous opioid peptides,” Trends in Neuroscience, Vol. 6, pp. 24-26, 1983.
    [24] J.E. Zadina, L Hackler, L.J. Ge and A.J. Kastin “A potent and selective endogenous agonist for the μ-opiate receptor,” Nature, Vol. 386, pp. 499-502, 1997.
    [25] C.H. Li and D. Chung, “Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 73, pp. 1145-1148, 1976.
    [26] A. Goldstein, S. Tachibana, L.I. Lowney, M. Hunkapiller and L. Hood, “Dynorphin-(1-13), an extraordinarily potent opioid peptide,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 76, pp. 6666-6670, 1979.
    [27] M. Waldhoer, S.E. Bartlett and J.L. Whistler, “Opioid receptors,” Annual Review of Biochemistry, Vol. 73, pp. 953-990, 2004.
    [28] D.E. Haines. Neuroanatomy: An Atlas of Structures, Sections, and Systems. Lippincott Williams & Wilkins. ISBN: 0781746779, 2004.
    [29] M.B. Carpenter. (1991)。神經解剖學精義 (陳鋒益譯)。第三版。台北市:合記出版社。(原著出版於1984)
    [30] R.S. Snell. (2003)。臨床神經解剖學 (劉亮廷譯)。台北縣:藝軒出版社。(原著出版於2001)
    [31] Neuroscience For Kids. (WWW Document). http://faculty.washington. edu/chudler/cv.html
    [32] J. Fichna, A. Janecka, J. Costentin and J.C. Do Rego, “The endomorphin system and its evolving neurophysiological role,” Pharmacological reviews, Vol. 59, pp. 88-123, 2007.
    [33] F .Cervero and A. Iggo, “The substantia gelatinosa of the spinal cord: a critical review,” Brain, Vol. 103, pp. 717-772, 1980.
    [34] A.G. Brown, “The dorsal horn of the spinal cord,” Quarterly Journal of Experimental Physiology, Vol. 67, pp. 193-212, 1982.
    [35] M. Yoshimura, “Slow synaptic transmission in the spinal dorsal horn,” Progress in Brain Research, Vol. 113, pp. 443-462, 1996.
    [36] A.R. Light and E.R. Perl, “Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers,” Journal of Computational Neuroscience, Vol. 186, pp.133-150, 1979.
    [37] J.E. Swett and C.J. Woolf, “The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal cord,” Journal of Computational Neuroscienc, Vol. 231, pp. 66-77, 1985.
    [38] P.D. Kitchener, P. Wilson and P.J. Snow, “Selective labelling of primary sensory afferent terminals in lamina II of the dorsal horn by injection of Bandeiraea simplicifolia isolectin B4 into peripheral nerves,” Neuroscience, Vol. 54, pp. 545-551, 1993.
    [39] I.E. Goldberg, G.C. Rossi, S.R. Letchworth, J.P. Mathis, J. Ryan-Moro, L. Leventhal, W. Su, D. Emmel, E.A. Bolan and G.W. Pasternak, “Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain,” Journal of Pharmacology Experimental Therapeutics, Vol. 286, pp. 1007-1013, 1998.
    [40] J.S. Guan, Z.Z. Xu, H. Gao, S.Q. He, G.Q. Ma, T. Sun, L.H. Wang, Z.N. Zhang, I.I.L. Kitchen, R. Elde, A. Zimmer, C. He, G. Pei, L. Bao and X. Zhang, “Interaction with Vesicle Luminal Protachykinin Regulates Surface Expression of δ-Opioid Receptors and Opioid Analgesia,” Cell, Vol. 122, pp. 619-631, 2005.
    [41] P.M. Schiller, Compounds useful in pain management, Patent Number: US06703483, Cornell Research Foundation Incorporation, 2004/03/09- 2006/06/09.
    [42] Y.C. Cheng and W.H. Prusoff, “Relationship between the inhibition constant (KI) and the concentration of inhibitor which cause 50 per cent inhibition (I50) of an enzymatic reaction,” Biochemical Pharmacology, Vol. 22, pp. 3099-3108, 1973.
    [43] G.F. Erspamer and C. Severini, “Guinea-pig ileum (GPI) and mouse vas deferens (MVD) preparations in the discovery, discrimination and parallel bioassay of opioid peptides,” Pharmacological Research, Vol. 26, pp. 109-121, 1992.
    [44] H.I. Mosberg, R. Hurst, V.J. Hruby, K. Gee, H.I. Yamamura, J.J. Galligan and T.F. Burks, “Bis-Penicillamine Enkephalins Possess Highly Improved Specificity toward δ Receptors,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 80, pp. 5871-5874, 1983.
    [45] B.L. Podlogar, M.G. Paterlini, D.M. Ferguson, G.C. Leo, D.A. Demeter, F.K. Brown and A.B. Reitz, “Conformational analysis of the endogenous μ-opioid agonist endomorphin-1 using NMR spectroscopy and molecular modeling, ” FEBS Letters, Vol. 439, pp. 13-20, 1998.
    [46] S. Fiori, C. Renner, J. Cramer, S. Pegoraro and L. Moroder, “Preferred conformation of endomorphin-1 in aqueous and membrane-mimetic environments,” Journal of Molecular Biology, Vol. 291, pp. 163-175, 1999
    [47] Y. In, K. Minoura, H. Ohishi, H. Minakata, M. Kamigauchi, M. Sugiura and T. Ishida, “Conformational comparison of μ-selective endomorphin-2 with its C-terminal free acid in DMSO solution, by 1H NMR spectroscopy and molecular modeling calculation,” Journal of Peptide Research, Vol. 58, pp. 399-412, 2001.
    [48] M. Keller, C. Boissard, L. Patiny, N.N. Chung, C. Lemieux, M. Mutter and P.W. Schiller, “Pseudoproline-containing analogues of morphiceptin and endomorphin-2 evidence for a cis Tyr-Pro amide bond in the bioactive conformation,” Journal of Medicinal Chemistry, Vol. 44, pp. 3896-3903, 2001.
    [49] Y. In, K. Minoura, K. Tomoo, Y. Sasaki, L.H. Lazarus, Y. Okada and T. Ishida, “Structural function of C-terminal amidation of endomorphin. Conformational comparison of μ-selective endomorphin-2 with its C-terminal free acid, studied by 1H-NMR spectroscopy, molecular calculation, and X-ray crystallography,” FEBS Journal, Vol. 272, pp. 5079-5097, 2005
    [50] X. Shao Y. Gao, C. Zhu, X. Liu, J. Yao, Y. Cui and R. Wang, “Conformational analysis of endomorphin-2 analogs with phenylalanine mimics by NMR and molecular modeling,” Bioorganic & Medicinal Chemistry, Vol. 15, pp. 3539-3547, 2007.
    [51] H.L. Maia, K.G. Orrell and H.N. Rydon, “Evaluation of the thermodynamic parameters for the interconversion of the conformational isomers of two N-acyl-prolines by Nuclear magnetic resonance spectroscopy,” Chemical Communications, pp. 1209-1210, 1971.
    [52] K. Wüthrich and C. Grathwohl, “A novel approach for studies of the molecular conformations in flexible polypeptides,” FEBS Letters, Vol. 43, pp. 337-340, 1974.
    [53] C. Grathwohl and K. Wüthrich, “NMR studies of the rates of proline cis-trans isomerization in oligopeptides,” Biopolymers, Vol. 20, pp. 2623-2633, 1981.
    [54] O.F. Robert, A.E. Philip and M.D. Christopher, “Multiple conformations of a protein demonstrated by magnetization transfer NMR spectroscopy,” Nature, Vol. 320, pp. 192-194, 1986.
    [55] E. Gaggelli, N. D’Amelio, N. Gaggelli and G. Valensin, “Metal ion effects on the cis-trans isomerization equilibrium of proline in short-chain peptides: A solution NMR study,” Chembiochem, Vol. 2, pp. 524-529, 2001.
    [56] M.G. Paterlini, F. Avitabile, B.G. Ostrowski, D.M. Ferguson and P.S. Portoghese, “Stereochemical requirements for receptor recognition of the μ-opioid peptide endomorphin-1,” Biophysical Journal, Vol. 78, pp. 590-599, 2000.
    [57] T. Yamazaki, S. Ro, M. Goodman, N.N. Chung and P.W. Schiller, “A topochemical approach to explain morphiceptin bioactivity,” Journal of Medicinal Chemistry, Vol. 36, pp. 708-719, 1993.
    [58] P. Grieco, L. Giusti, A. Carotenuto, P. Campiglia, V. Calderone, T. Lama, I. Gomez-Monterrey, G. Tartaro, M.R. Mazzoni and E. Novellino, “Morphiceptin analogues containing a dipeptide mimetic structure an investigation on the bioactive topology at the μ-receptor,” Journal of Medicinal Chemistry, Vol. 48, pp. 3153-3163, 2005.
    [59] I.J. Mcfadyen, J.C. Ho, H.I. Mosberg and J.R. Traynor, “Modifications of the cyclic mu receptor selective tetrapeptide Tyr-c[D-Cys-Phe- D-Pen]NH2 (Et) : effects on opioid receptor binding and activation,” Journal of peptide research, Vol. 55 pp. 255-261, 2000.
    [60] H.I. Mosberg and C.B. Fowler, “Development and validation of opioid ligand–receptor interaction models: The structural basis of mu vs. delta selectivity,” Journal of peptide research, Vol. 60 pp. 329-335, 2002.
    [61] I.D. Pogozheva, M.J. Przydzial and H.I. Mosberg, “Homology modeling of opioid receptor-ligand complexes using experimental constraints,” The AAPS Journal, Vol. 7, pp. E434-E448, 2005.
    [62] C. Tömböly, K.E. Kövér, A. Péter; D. Tourwé, D. Biyashev, S. Benyhe, A. Borsodi, M. Al-Khrasani and A.Z. Rónai, “Structure-activity study on the Phe side chain arrangement of endomorphins using conformationally constrained analogues,” Journal of medicinal chemistry, Vol. 47, pp. 735-743, 2004.
    [63] L.H. Lazarus, S. Salvadori, R. Tomatis and W.E. Wilson, “Opioid receptor selectivity reversal in deltorphin tetrapeptide analogues,” Biochemistry Biophysical Resarch Communication, Vol. 178, 110-115, 1991.
    [64] I. Lengyel, G. Orosz, D. Biyashev, L. Kocsis, M. Al-Khrasani, A. Rónai, C. Tömböly, Z. Fürst, G. Tóth and A. Borsodi, “Side chain modifications change the binding and agonist properties of endomorphin 2,” Biochemistry Biophysical Resarch Communication, Vol. 290, pp. 153-161, 2002.
    [65] Y. Fujita, Y. Tsuda, T. Li, T. Motoyama, M. Takahashi, Y. Shimizu, T. Yokoi, Y. Sasaki, A. Ambo, A. Kita, Y. Jinsmaa, S.D. Bryant, L.H. Lazarus and Y. Okada, “Development of potent bifunctional endomorphin-2 analogues with mixed μ-/δ-opioid agonist and δ-opioid antagonist properties,” Journal of Medicinal Chemistry, Vol. 47, pp. 3591-3599, 2004.
    [66] Y. Gao, X. Liu, J. Wei, B. Zhu, Q. Chena and R. Wang, “Structure-activity relationship of the novel bivalent and C-terminal modified analogues of endomorphin-2,” Bioorganic & Medicinal Chemistry Letters, Vol. 15, pp. 1847-1850, 2005.
    [67] Y. Yu, C.L. Wang, Y. Cui, Y.Z. Fan, J. Liu, X. Shao, H.M. Liu and R. Wang, “C-terminal amide to alcohol conversion changes the cardiovascular effects of endomorphins in anesthetized rats,” Peptides, Vol. 27, pp. 136-143, 2007.
    [68] B. Leitgeb, A. Szekeres and G. Tóth, “Conformational analysis of endomorphin-1 by molecular dynamics methods,” Journal of Peptide Research, Vol. 62, pp. 145-157, 2003.
    [69] B. Leitgeb, F. Ötvös and G. Tóth, “Conformational analysis of endomorphin-2 by molecular dynamics methods,” Biopolymers, Vol. 68, pp. 497-511, 2003.
    [70] F. Ötvös, T. Körtvélyesi and G. Tóth, “Structure-activity relationships of endomorphin-1, endomorphin-2 and morphiceptin by molecular dynamics methods,” Journal of Molecular Structure, Vol. 666-667, pp. 345-353, 2003.
    [71] 張巍礩 (2001)。內嗎啡對下視丘結節漏斗多巴胺神經元活性之影響:電生理及神經化學之研究。(碩士論文,國立陽明大學生理學研究所,九十學年度)。國立陽明大學圖書館,館藏編號:R 008.8 1121.3 。
    [72] 陳慶明 (2001)。內嗎啡在大鼠上脊髓的抗神經痛及酬賞作用。(碩士論文,國防醫學院藥理學研究所,九十學年度)。國防醫學院圖書館,館藏條碼:M006026。
    [73] 賴永祥 (2002)。探討嗎啡及內嗎啡在大白鼠離體脊髓電生理中多突觸反射上之作用。(碩士論文,國防醫學院藥理學研究所,九十一學年度)。國防醫學院圖書館,館藏條碼:M007334。
    [74] 魏潔 (2005)。具有氮-氧(N-O)轉角結構的內嗎啡肽-2類似物的設計、合成和構效關系研究。(博士論文,蘭州大學生物化學與分子生物學,九十四學年度)。萬方數據資源系統,中國。
    [75] 于燁 (2006)。C-末端空間立體構象限制的內嗎啡肽的構建以及內嗎啡肽及其類似物的生理、藥理活性研究。(博士論文,蘭州大學生物化學與分子生物學,九十五學年度)。萬方數據資源系統,中國。
    [76] 高艷鋒 (2006)。二聚化以及側鏈和碳末端修飾的內嗎啡肽類似物的構效關系研究。(博士論文,蘭州大學生物化學與分子生物學,九十五學年度) 。萬方數據資源系統,中國。
    [77] 施志浩 (2007)。內嗎啡肽-2及其類似物的合成與鎮痛活性研究。(博士論文,南京理工大學應用化學,九十六學年度)。萬方數據資源系統,中國。
    [78] 邵璇 (2007)。NMR及分子模擬方法進行內嗎啡肽及其側鏈、C-末端以及主鏈改造類似物空間立體構象的研究。(博士論文,蘭州大學生物化學與分子生物學,九十六學年度)。萬方數據資源系統,中國。
    [79] 朱貝貝 (2007)。三種內嗎啡肽類似物的鎮痛和成癮性研究及分子模擬。(碩士論文,蘭州大學生物化學與分子生物學,九十六學年度)。萬方數據資源系統,中國。
    [80] 劉雪鋒 (2007)。組合化學修飾內嗎啡肽-1類似物的合成和藥理學活性研究。(碩士論文,蘭州大學生物化學與分子生物學,九十六學年度)。萬方數據資源系統,中國。
    [81] SPARTAN ’02, Wavefunction Incorporation, Irvine, Calif, 2001.
    [82] J.M. Haile, “Molecular Dynamics : Elementary Methods,” John Willy & Sons, Incorporation New York, 1992.
    [83] GROMACS, Version3.3.1, Groningen machine for chemical simulations, 2004.
    [84] E. Lindahl, B. Hess and D.V.R. Spoel, “GROMACS 3.0: a package for molecular simulation and trajectory analysis,” Journal of Molecular Modeling, Vol. 7, pp. 306‐317, 2001.
    [85] W.R.P. Scott, P.H. Hu1nenberger, I.G. Tironi, A.E. Mark,S.R. Billeter, J. Fennen, A.E. Torda, T. Huber, P. Kru1ger and W.F.V. Gunsteren, “The GROMOS biomolecular simulation program package,” Journal of Physical Chemistry A, Vol. 103, pp. 3596‐3607, 1999.
    [86] G.N. Ramachandran, V. Sasisekharan and Y.T. Thathachari, Structure of collagen at the molecular level. In G..N. Ramanathan (Ed.), Treatise on collagen, pp. 81-115. New York: Academic press, 1962.
    [87] G.N. Ramachandran, C. Ramakrishnan and V. Sasisekharan, “Stereochemistry of polypeptide chain configuration,” Journal of Molecular Biology, Vol. 7 pp. 95-99, 1963.
    [88] C. Ramakrishnan and G.N. Ramachandran, “Stereochemical criteria for polypeptide and protein chain conformations–Part II: Allowed conformations for a pair of peptide units,” Biophysical Journal, Vol. 5, pp. 909-933, 1965.
    [89] M.G. Barry and W.P. John, “Predominant torsional forms adopted by dipeptide conformers in solution: parameters for molecular recognition,” Journal of peptide science, Vol. 6, pp. 186-199, 2000.
    [90] J.M. Neil, M.G. Barry and W.P. John, “Predominant torsional forms adopted by oligopeptide conformers in solution: parameters for molecular recognition,” Journal of peptide science, Vol. 7, pp. 175-189, 2001.
    [91] B. Leitgeb and A. Szekeres, “Exploring the conformational space of the mu-opioid agonists endomorphin-1 and endomorphin-2,” Journal of Molecular Structure, Vol. 666-667, pp. 337-344, 2003.
    [92] S.S. Zimmerman and H.A. Scheraga, “Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N-methylamides of pro-X and X-pro dipeptides,” Biopolymers, Vol. 16, pp. 811-843, 1977.
    [93] K. Guruprasad and S. Rajkumar, “β- and γ-turns in proteins revisited: A new set of amino acid turn-type dependent positional preferences and potentials,” Journal of Bioscience, Vol. 25, pp. 143-156, 2000.
    [94] Z.Q. Yuan. Synthesis of β- and γ- turn mimetics : Applications to Desmopressin, Oxytocin and LHRH. http://www.chem.umu.se/dep/ orgchem/forskning/thesis/zhongqingyuan/Thesis20010911.pdf (2006/7/2 5), 2001.
    [95] D.J. Barlow and J.M. Thornton, “Ion-pairs in proteins,” Journal of Molecular Biology, Vol. 168, pp. 867-885, 1983.
    [96] K.S.C. Reid, P.F. Lindley and J.M. Thornton, “Sulphur-aromatic interactions in proteins,” FEBS Letters Vol. 190, pp. 209-213, 1985.
    [97] S.K. Burely and G.A. Petsko, “Aromatic-aromatic interaction: A mechanism of protein structure stabilization,” Science, Vol. 229, pp. 23-28, 1985.
    [98] J. Singh and J.M. Thornton, “The interaction between phenylalanine rings in proteins,” FEBS Letters Vol. 191, pp. 1-6, 1985.
    [99] T.L. Blundell, J. Singh, J.M. Thornton and S.K. Burley and G.A. Petsko, “Aromatic interactions,” Science, Vol. 234, pp. 1005, 1986.
    [100] S.K. Burely and G.A. Petsko, “Amino-aromatic interactions in proteins,” FEBS Letters, Vol. 203, pp. 139-143, 1986.
    [101] J. Singh, J.M. Thornton, M. Snarey and S.F. Campbell, “The geometric of interacting arginine-carboxyls in proteins,” FEBS Letters, Vol. 224, pp. 161-171, 1987.
    [102] S.K. Burely and G.A. Petsko, “Weakly polar interactions in proteins,” Advances in Protein Chemistry, Vol. 39, pp. 125-189, 1988.
    [103] J. Singh and J.M. Thornton, “SIRIUS: An automated method for the analysis of the preferred packing arrangements between protein groups,” Journal of Molecular Biology, Vol. 211, pp. 595-615, 1990.
    [104] C.A. Hunter, J. Singh and J.M. Thornton, “π-π interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins,” Journal of Molecular Biology, Vol. 218, pp. 837-846, 1991.
    [105] M.J. Behe, E.E. Lattman and G.D. Rose, “The protein-folding problem: The native fold determines packing, but does packing determine the native fold ?,” Proceedings of The National Academy of Sciences of the United States of America, Vol. 88, pp. 4195-4199, 1991.
    [106] R.A. Laskowski. Atlas of side-chain interactions (WWW Document). http://www.biochem.ucl.ac.uk/bsm/sidechains/index.html
    [107] J. Singh and J.M. Thornton. Atlas of Protein Side-Chain Interactions. New York : Oxford University. ISBN: 0199633614 (v.1), 0199633622 (v.2), 1992.
    [108] J.B.O. Mitchell, J.M. Thornton, J. Singh and S.L. Price, “Towards an understanding of the arginine-aspartate interaction,” Journal of Molecular Biology, Vol. 226, pp. 251-262, 1992.
    [109] J.B.O. Mitchell, C.L. Nandi, S. Ali, I.K. McDonald, J.M. Thornton, S.L. Price and J. Singh, “Amino-aromatic interactions,” Nature, Vol. 366, pp. 413, 1993.
    [110] C.A. Orengo, T.P. Flores and W.R. Taylor, J.M. Thornton, “Identification and classification of protein fold families,” Protein Engineering Design and Selection, Vol. 6, pp. 485-500, 1993.
    [111] F.M. Richards and W.A. Lim, “An analysis of packing in the protein folding problem,” Quarterly Reviews of Biophysics, Vol. 26, pp. 423-498, 1994.
    [112] J.B.O. Mitchell, C.L.Nandi, I.K. McDonald, J.M. Thornton and S.L. Price, “Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding ?,” Journal of Molecular Biology, Vol. 239, pp. 315-331, 1994.
    [113] L. Brocchieri and S. Karlin, “Geometry of interplanar residue contacts in protein structures,” Proceedings of The National Academy of Sciences of the United States of America, Vol. 91, pp. 9297-9301, 1994.
    [114] M.M. Flocco and S.L. Mowbray, “Planar stacking interactions of arginine and aromatic side-chains in proteins,” Journal of Molecular Biology, Vol. 235, pp. 709-717, 1994.
    [115] S. Bromberg and K.A. Dill, “Side-chain entropy and packing in proteins,” Protein Science, Vol. 3, pp. 997-1009, 1994.
    [116] M.M. Flocco and L.S. Mowbray, “Strange bedfellows: Interactions between acidic side-chains in proteins,” Journal of Molecular Biology, Vol. 254, pp. 96-105, 1995.
    [117] J.B.O. Mitchell, R.A. Laskowski and J.M. Thornton, “Non-randomness in side-chain packing: The distribution of interplanar angles,” Proteins: Structure, Function, and Genetics, Vol. 29, pp. 370-380, 1997.
    [118] M. Nishio, Y. Umezawa, M. Hirota and Y. Takeuchi, “The CH/π interaction: Significance in molecular recognition,” Tetrahedron, Vol. 51, pp. 8665-8701, 1995.
    [119] B. Maria, S.W. Manfred, J. Andreas, S. Jürgen and H. Rolf, “C-H … π-interactions in proteins,” Journal of Molecular Biology, Vol. 307, pp. 357-377, 2001.
    [120] A. Thomas, R. Meurisse, B. Charloteaux and R. Brasseur, “Aromatic side-chain interactions in proteins. I. Main structural features,” Proteins: Structure, Function, and Genetics, Vol. 48, pp. 628-634, 2002.
    [121] R. Bhattacharyya, U. Samanta and P. Charkrabarti “Aromatic-aromatic interactions in and around alpha-helices,” Protein Engineering, Vol. 15, pp. 91-100, 2002.
    [122] R. Bhattacharyya, R.P. Saha, U. Samanta and P. Chakrabarti, “Geometry of interaction of the histidine ring with other planar and basic residues,” Journal of Proteome Research, Vol. 2, pp. 255-263, 2003.
    [123] R. Bhattacharyya and P. Chakrabarti, “Stereospecific Interactions of Proline Residues in Protein Structures and Complexes,” Journal of Molecular Biology, Vol. 331, pp. 925-940, 2003.
    [124] B. Leitgeb and G. Tóth, “Aromatic-aromatic and proline-aromatic interactions in endomorphin-1 and endomorphin-2,” European Journal of Medicinal Chemistry, Vol. 40, pp. 647-686, 2005.
    [125] P. Ehrich, “Present status of chemotherapy,” Chemische Berichte, Vol. 42, pp. 17-47, 1909.
    [126] A.H. Beckett and A.F. Casy, “Synthetic analgesics: Stereochemical considerations,” The Journal of Pharmacy and Pharmacology, Vol. 6, pp.986-1001, 1954.
    [127] B.E. Kane, B. Svensson and D.M. Ferguson, “Molecular Recognition of Opioid Receptor Ligands,” The AAPS Journal, Vol. 8, pp. E126-E137, 2006.
    [128] E.J. Lloyd and P.R. Andrews, “A common structural model for central-nervous-system drugs and their receptors,” Journal of Medicinal Chemistry, Vol. 29, pp. 453-462, 1986.
    [129] S.A. Depriest, D. Mayer, C.B. Naylor and G.R Marshall, “3D-QSAR of angiotensin-coverting enzyme and thermolysin inhibitors - A comparison of CoMFA models based on deduced and experimentally determined active-site geometries,” Journal of the American Chemical Society, Vol. 115, pp. 5372-5384, 1993.
    [130] B.N.N. Rao, M.B. Anderson, J.H. Musser, J.H. Gilbert, M.E. Schaefer and C. Foxall, “Sialyl Lewis X mimics derived from a pharmacophore search are selectin inhibitors with anti-inflammatory activity,” The Journal of Biological Chemistry, Vol. 269, pp. 19663-19666, 1994.
    [131] P. Huang, S. Kim and G. Loew, “Development of a common 3D pharmacophore for δ-opioid recognition from peptides and non-peptides using a novel computer program,” Journal of Computer-Aided Molecular Design, Vol. 11, pp. 21-28, 1997.
    [132] Y.C Wu, J.S. Lin and C.C. Hwang, “Structure-activity relationships of αS1-casomorphin using AM1 calculations and molecular dynamics simulations,” Journal of Physical Chemistry B, Vol. 111, pp. 7377-7383, 2007.
    [133] M. Karelson, V.S. Lobanov and A.R. Katritzky, “Quantum-chemical descriptors in QSAR/QSPR studies,” Chemical Reviews, Vol. 96, pp. 1027-1044, 1996.
    [134] C. Stein, M. Schäfer and H. Machelska, “Attacking pain at its source: New perspectives on opioids,” Nature Medicine, Vol. 9, pp. 1003-1008, 2003.
    [135] J.B. Wang, P.S. Johnson, A.M. Persico, A.L. Hawkins, C.A. Griffin and R.U. George, “Human μ opiate receptor: cDNA and genomic clones, pharmacologic characterization and chromosomal assignment,” FEBS Letters, Vol. 338, pp. 217-222, 1994.
    [136] A. Mestek, J.H. Hurley, L.S. Bye, A.D. Campbell, Y. Chen, M. Tian, J. Liu, H. Schulman and L. Yi, “The human mu opioid receptor: Modulation of functional desensitization by calcium-calmodulin- dependent protein kinase and protein kinase C,” The Journal of Neuroscience, Vol. 15, pp. 2396-2406, 1995.
    [137] T. Sagara, H. Egashira, M. Okamura, I. Fujii, Y. Shimohigashi and K. Kanematsu, “Ligand recognition in μ opioid receptor: Experimentally based modeling of μ opioid receptor binding sites and their testing by ligand docking,” Bioorganic and Medicinal Chemistry, Vol. 4, pp. 2151-2166, 1996.
    [138] A. Mansour, L.P. Taylor, J.L. Fine, R.C. Thompson, M.T. Hoversten, H.I. Mosberg, S.J. Watson and H. Akil, “Key residues defining the μ-opioid receptor binding pocket: A site-directed mutagenesis study,” Journal of Neurochemistry, Vol. 68, pp. 344-353, 1997.
    [139] G.M. Morries, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, “Automated docking using Lamarckian Genetic Algorithm and an empirical binding free energy function,” Journal of Computationl Chemistry, Vol. 19, pp. 1639-1662, 1998.
    [140] (Web Site). http://apbs.sourceforge.net/.
    [141] T.J. Dolinsky, J.E. Nielsen, J.A. McCammon and N.A. Baker, “PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations,” Nucleic Acids Research, Vol. 32, pp. W665-W667, 2004.

    下載圖示 校內:2009-06-16公開
    校外:2010-06-16公開
    QR CODE