簡易檢索 / 詳目顯示

研究生: 邱籥雅
Chiu, Yueh-Ya
論文名稱: 擬鹵素摻雜二/三維疊層鈣鈦礦之材料分析與穩定性探討
Material characteristics and stability of pseudohalide perovskite in multi-dimensional heterojunction structure
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 擬鹵素硫氰酸穩定性鈣鈦礦太陽能電池二/三維疊層鈣鈦礦
外文關鍵詞: pseudo-halide, thiocyanate, stability, perovskite solar cells, multi-dimensional heterojunction structure
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來有機無機混成鈣鈦礦太陽能電池最高的效率達到24%,但鈣鈦礦在穩定性方面因為容易與水氣反應產生分解現象,因此成為鈣鈦礦太陽能電池商業化的困難之一,本研究利用FASCN摻雜入FA0.9Cs0.1PbI3鈣鈦礦中,並在摻雜入SCN的三維鈣鈦礦上疊加二維結構,形成二/三維疊層鈣鈦礦,提升鈣鈦礦對水氣的穩定性。
    先前的文獻中提到由於鈣鈦礦結構中Pb與SCN之間的鍵結較強,較不易與水分子結合產生分解反應,並提到了二維結構由於較疏水、穩定性較好,疊加在三維結構上形成一層保護層後能提升鈣鈦礦的穩定性,因此研究中將摻雜SCN的鈣鈦礦與二/三維疊層鈣鈦礦薄膜放置在高水氧環境下測試,發現加上二維結構後確實能提升穩定性,並且二/三維疊層鈣鈦礦元件在無封裝無照光環境下放置20天後仍然保持良好的效率。
    研究中同時利用不同儀器分析SCN在鈣鈦礦薄膜內的分布情形,並且透過改變鈣鈦礦的製程來探討SCN流失的情況,也利用PL、XRD、SEM、光學顯微鏡等儀器分析二/三維疊層鈣鈦礦,發現一開始的二維結構存在三維鈣鈦礦的表面,但隨著時間的變化二維結構會產生擴散現象,使二維結構進入到三維鈣鈦礦中。

    Currently, the organic-inorganic hybrid perovskite solar cells (PSCs) have achieved high efficiency. However, their stability remind to be concerned concern under ambient condition for real application. The purpose of this study is to enhance the perovskite stability in virtue of composition engineering by doping large-sized cation and pseudo-halide thiocyanate (SCN) into perovskites. Mixed cations and halides (or pseudo-halide) in perovskites have been demonstrated to stabilize the perovskite lattice structure. In previous works, addition of Pb(SCN)2 in moisture sensitive methylammonium lead triiodide (MAPbI3) perovskite enhanced the MAPbI3 grain size, reduced defects state and improved the film stability. In addition, it was found that stacking two-dimensional (2D) perovskite layer on three-dimensional (3D) perovskite could significantly enhance the stability of perovskite solar cells. Thus, in this work, we incorporated SCN- anion into FA0.9Cs0.1PbI3. We further stacked 2D perovskite layer, which was formed by large-size aromatic cation phenethylammonium (PEA+), on SCN-based perovskite to improve the stability of the perovskite solar cells.

    摘要 iii 致謝 ix 目錄 x 表目錄 xiii 圖目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池發展 1 1.2.1 第一代太陽能電池 2 1.2.2 第二代太陽能電池 3 1.2.3 第三代太陽能電池 3 1.3 太陽能電池基本原理 6 1.3.1 太陽光譜圖與空氣質量 6 1.3.2 Shockley-Queisser理論 7 1.3.3 太陽能電池元件量測 7 1.4 研究動機 10 第二章 文獻回顧 11 2.1 有機無機混成鈣鈦礦發展 11 2.2 三維鈣鈦礦材料 14 2.2.1 一價陽離子 (A位置) 14 2.2.2 二價陽離子 (B位置) 15 2.2.3 鹵素陰離子 (X位置) 17 2.2.4 擬鹵素陰離子 (X位置) 18 2.3 二維鈣鈦礦材料 24 2.3.1 二/三維混成鈣鈦礦 24 2.3.2 二/三維疊層鈣鈦礦 28 2.3.3擬鹵素二維鈣鈦礦 29 第三章 實驗方法與儀器分析 33 3.1 實驗儀器與藥品 33 3.2 實驗流程圖 34 3.3 鈣鈦礦太陽能電池元件製作 34 3.3.1 基板製備 34 3.3.2 電子傳輸層(SnO2)製備 34 3.3.3 鈣鈦礦薄膜製程 35 3.3.4 電洞傳輸層(spiro)製備 35 3.3.5 電極製備 35 3.4 樣品特性分析 36 3.4.1 I-V特性曲線與量子轉換效率量測 36 3.4.2 吸收光譜量測 (UV-vis spectrum) 37 3.4.3 光致螢光光譜量測 (PL spectrum) 37 3.4.4 拉曼光譜儀 (Raman spectrum) 37 3.4.5 傅立葉轉換紅外光譜儀 (FTIR) 38 3.4.6 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 38 3.4.7 X光繞射儀 (X-ray Diffraction, XRD) 38 3.4.8 低掠角廣角X光散射儀 (GIWAXS) 39 3.4.9 原子力顯微鏡(Atomic Force Microscope, AFM) 40 3.4.10 表面電位顯微鏡(Kelvin Probe Force Microscope, KPFM)與表面電位(Kelvin Probe, KP) 41 3.4.11 X射線光電子能譜(X-ray photoelectron Spectroscopy, XPS) 42 3.4.12 二次離子質譜儀(Secondary Ion Mass Spectroscopy, SIMS) 43 第四章 結果與討論 44 4.1 三維鈣鈦礦FA0.9Cs0.1PbI3摻雜FASCN分析 44 4.1.1 不同SCN摻雜比例的鈣鈦礦表面SEM分析 44 4.1.2 不同SCN摻雜比例的鈣鈦礦電池元件分析 45 4.1.3 不同SCN摻雜比例鈣鈦礦XRD分析 46 4.1.4 不同SCN摻雜比例的鈣鈦礦穩定性分析 47 4.1.5 摻雜SCN鈣鈦礦Kelvin Probe分析 48 4.1.6 不同SCN摻雜比例的鈣鈦礦AFM與KPFM分析 51 4.1.7 摻雜SCN鈣鈦礦XPS分析 56 4.1.8 摻雜SCN鈣鈦礦nano-SIMS分析 59 4.1.9 改變製程方法對SCN殘留量之影響 61 4.2 二/三維疊層鈣鈦礦分析(FA0.9Cs0.1PbI3-xSCNx+PEAI) 65 4.2.1 不同PEAI濃度的鈣鈦礦表面與側面SEM分析 66 4.2.2 不同PEAI濃度的鈣鈦礦元件分析 67 4.2.3 不同PEAI濃度的鈣鈦礦PL放光分析 68 4.2.4 不同PEAI濃度的鈣鈦礦XRD與GIWAX分析 69 4.2.5 不同PEAI濃度的鈣鈦礦穩定性分析 71 第五章 結論與未來展望 77 5.1 結論 77 5.2 未來展望 77 參考文獻 79

    [1] A. E. Becquerel, "Mémoire Sur Les Effets électriques Produits Sous l'influence des Rayons Solaires," Comptes Rendus de L’Academie des Sciences, vol. 9, pp. 561-567, 1839.
    [2] C. E. Fritts, "On a New Form of Selenium Photocell," Proceedings of the American Association for the Advancement of Science vol. 33, p. 97, 1883.
    [3] F. C. Nix and A. W. Treptow, "A Thallous Sulphide Photo-emf Cell," Journal of the Optical Society of America, vol. 29, no. 11, pp. 457–462, 1939.
    [4] R. S. Ohl, "Light-Sensitive Electric Device," U. S. Patent Office 2402662, 1946.
    [5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," IEEE Journal of Photovoltaics, vol. 4, no. 6, pp. 1433-1435, 2014.
    [6] W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, and P. Altermatt, "20.8% PERC Solar Cell on 156 mm × 156 mm P-Type Multicrystalline Silicon Substrate," IEEE Journal of Photovoltaics, vol. 6, no. 1, pp. 3-9, 2016.
    [7] T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, and M. Kondo, "Development of Highly Stable and Efficient Amorphous Silicon Based Solar Cells," Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, pp. 2213 - 2217, 2013.
    [8] B. O'Regan and M. Grätzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films," Nature, vol. 353, no. 6346, pp. 737-740, 1991/10/01 1991.
    [9] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya, "Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes," Chemical Communications, 10.1039/C5CC06759F vol. 51, no. 88, pp. 15894-15897, 2015.
    [10] M. Graetzel, "Dye-Sensitized Solar Cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003.
    [11] A. Kojima, K. Teshima, YasuoShirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [12] NREL, "Best Research-Cell Efficiency Chart," https://www.nrel.gov/pv/cell-efficiency.html, 2019.
    [13] N. Koide, A. Islam, Y. Chiba, and L. Han, "Improvement of Efficiency of Dye-Sensitized Solar Cells Based on Analysis of Equivalent Circuit," Journal of Photochemistry and Photobiology A-chemistry - J PHOTOCHEM PHOTOBIOL A-CHEM, vol. 182, pp. 296-305, 2006.
    [14] G. Instruments, "DSSC: Dye Sensitized Solar Cells," https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/.
    [15] A. E. Tutorials, "Solar Cell I-V Characteristic," http://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-v-characteristic.html.
    [16] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, vol. 2, p. 591, 2012.
    [17] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells," Nature Materials, vol. 13, p. 897, 2014.
    [18] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells," Energy & Environmental Science, vol. 7, no. 3, pp. 982-988, 2014.
    [19] Y. Yu, C. Wang, C. R. Grice, N. Shrestha, J. Chen, D. Zhao, W. Liao, A. J. Cimaroli, P. J. Roland, R. J. Ellingson, and Y. Yan, "Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives," ChemSusChem, vol. 9, no. 23, pp. 3288-3297, 2016.
    [20] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, "Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency," Energy & Environmental Science, vol. 9, no. 6, pp. 1989-1997, 2016.
    [21] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, "Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells," Nature Photonics, vol. 8, p. 489, 2014.
    [22] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, "Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications," Energy & Environmental Science, vol. 7, pp. 3061-3068 2014.
    [23] E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, "Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, no. 3, pp. 429-433, 2014.
    [24] E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, "High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite," The Journal of Physical Chemistry Letters, vol. 4, no. 6, pp. 897-902, 2013.
    [25] B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero, and I. Mora-Sero, "Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, no. 10, pp. 1628-1635, 2014.
    [26] P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, N. K. Minar, M. B. Johnston, H. J. Snaith, and T. Bein, "Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells," Advanced Energy Materials, vol. 4, no. 14, p. 1400355, 2014.
    [27] Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, and T. Xu, "Pseudohalide‐Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)2I Thin Films," Angewandte Chemie International Edition, vol. 54, no. 26, pp. 7617-7620, 2015.
    [28] Y. Chen, B. Li, W. Huang, D. Gao, and Z. Liang, "Efficient and Reproducible CH3NH3PbI3−x(SCN)x Perovskite Based Planar Solar Cells," Chemical Communications, vol. 51, no. 60, pp. 11997-11999, 2015.
    [29] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, and F. Yan, "Efficient and Stable Perovskite Solar Cells Prepared in Ambient Air Irrespective of the Humidity," Nature Communications, vol. 7, p. 11105, 2016.
    [30] Y. Sun, J. Peng, Y. Chen, Y. Yao, and Z. Liang, "Triple-Cation Mixed-Halide Perovskites: Towards Efficient, Annealing-Free and Air-Stable Solar Cells Enabled by Pb(SCN)2 Additive," Scientific Reports, vol. 7, p. 46193, 2017.
    [31] Y.-H. Chiang, H.-M. Cheng, M.-H. Li, T.-F. Guo, and P. Chen, "Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells," ChemSusChem, vol. 9, no. 18, pp. 2620-2627, 2016.
    [32] Y.-H. Chiang, M.-H. Li, H.-M. Cheng, P.-S. Shen, and P. Chen, "Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability," ACS Applied Materials & Interfaces, vol. 9, no. 3, pp. 2403-2409, 2017.
    [33] Q. Han, Y. Bai, J. Liu, K.-z. Du, T. Li, D. Ji, Y. Zhou, C. Cao, D. Shin, J. Ding, A. D. Franklin, J. T. Glass, J. Hu, M. J. Therien, J. Liu, and D. B. Mitzi, "Additive Engineering for High-Performance Room-Temperature-Processed Perovskite Absorbers with Micron-Size Grains and Microsecond-Range Carrier Lifetimes," Energy & Environmental Science, vol. 10, no. 11, pp. 2365-2371, 2017.
    [34] I. C. Smith, D. E. T. Hoke, D. D. Solis‐Ibarra, P. M. D. McGehee, and P. H. I. Karunadasa, "A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability," Angewandte Chemie International Edition, vol. 53, no. 42, pp. 11232-11235, 2014.
    [35] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, "2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications," Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843-7850, 2015.
    [36] L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and E. H. Sargent, "Ligand-Stabilized Reduced-Dimensionality Perovskites," Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649-2655, 2016.
    [37] W. Peng, J. Yin, K.-T. Ho, O. Ouellette, M. D. Bastiani, B. Murali, O. E. Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J.-H. He, B. S. Ooi, O. F. Mohammed, E. Sargent, and O. M. Bakr, "Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals," Nano Letters, vol. 17, no. 8, pp. 4759-4767, 2017.
    [38] H. Tsai, W. Nie, J. C. Blancon, C. C. Stoumpos, C. M. M. Soe, J. Yoo, J. Crochet, S. Tretiak, J. Even, A. Sadhanala, G. Azzellino, R. Brenes, P. M. Ajayan, V. Bulović, S. D. Stranks, R. H. Friend, M. G. Kanatzidis, and A. D. Mohite, "Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden–Popper Layered Perovskites," Advanced Materials, vol. 30, no. 6, p. 1704217, 2018.
    [39] P. Chen, Y. Bai, S. Wang, M. Lyu, J. H. Yun, and L. Wang, "In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells," Advanced Functional Materials, vol. 28, no. 17, p. 1706923, 2018.
    [40] K. T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu, O. Almora, M. Tschumi, P. A. Schouwink, G. Seo, S. Heo, J. Park, J. Jang, S. Paek, G. Garcia-Belmonted, and M. K. Nazeeruddin, "Selective Growth of Layered Perovskites for Stable and Efficient Photovoltaics," Energy & Environmental Science, vol. 11, no. 4, pp. 952-959, 2018.
    [41] J. G. Labram, N. R. Venkatesan, C. J. Takacs, H. A. Evans, E. E. Perry, F. Wudl, and M. L. Chabinyc, "Charge Transport in a Two-Dimensional Hybrid Metal Halide Thiocyanate Compound," Journal of Materials Chemistry C, vol. 5, no. 24, pp. 5930-5938, 2017.
    [42] G. Tang, C. Yang, A. Stroppa, D. Fang, and J. Hong, "Revealing the Role of Thiocyanate Anion in Layered Hybrid Halide Perovskite (CH3NH3)2Pb(SCN)2I2," The Journal of Chemical Physics, vol. 146, no. 22, p. 224702, 2017.
    [43] J. I. C. Penagos, E. R. Romero, G. Gordillo, J. M. C. Hoyos, and M. Á. R. Sánchez, "On the True Band Gap of the (CH3NH3)2Pb(SCN)2I2 Hybrid Perovskite: An Interesting Solar-Cell Material," physica status solidi (RRL) – Rapid Research Letters, vol. 12, no. 4, p. 1700376, 2018.
    [44] A. M. Ganose, C. N. Savory, and D. O. Scanlon, "Electronic and Defect Properties of (CH3NH3)2Pb(SCN)2I2 Analogues for Photovoltaic Applications," Journal of Materials Chemistry A, vol. 5, no. 17, pp. 7845-7853, 2017.
    [45] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin Probe Force Microscopy and its Application," Surface Science Reports, vol. 66, no. 1, pp. 1-27, 2011.
    [46] T. Cai, F. Li, Y. Jiang, X. Liu, X. Xia, X. Wang, J. Peng, L. Wang, and W. A. Daoud, "In situ inclusion of thiocyanate for highly luminescent and stable CH3NH3PbBr3 perovskite nanocrystals," Nanoscale, vol. 11, no. 3, pp. 1319-1325, 2019.

    下載圖示 校內:2024-07-23公開
    校外:2024-07-23公開
    QR CODE