| 研究生: |
曾臆璁 Zang, Yi-Chong |
|---|---|
| 論文名稱: |
在四面體與稜鏡型網格上探討低馬赫數流 Numerical Investigation of Low-Mach-Number Flows on the Tetrahedral/Prismatic Meshes |
| 指導教授: |
黃啟鍾
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 平行運算 、非結構四面體/稜鏡型網格 、壓力更正方程式 、低馬赫數流 |
| 外文關鍵詞: | parallel computation, unstructured tetrahedral/prismatic meshes, pressure correction equation, low-mach-number flow |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有關低馬赫數流方面,許多實驗與理論報告已經提出,但在理論計算方面仍然具有研究之價值。依照Rossow壓力更正概念,本文建立一數值求解步驟來探討低馬赫數流之行為。首先在流場區域建立非結構四面體/稜鏡型網格,然後利用上述數值法求解三維尤拉/拿維-史脫克方程式。此數值方法包含四步Runge-Kutta時間積分法、以馬赫數表示之 Roe’s通量差分法及求解 Rossow’s 壓力更正方程式之含/不含鬆弛因子之Jacobi、Gauss-Seidel、Modified Gauss-Seidel疊代法。在本計算中,分別進行單核心運算及雙核心與四核心之平行運算等。為評估此數值方法,首先探討球體與圓型截面之收斂-發散噴嘴之非黏滯流。在不同馬赫數下,將計算所得之球表面壓力係數及速度分佈與勢流理論解比較並研究其收斂行為。至於噴嘴流,沿噴嘴中心線之壓力和速度分佈與一維等熵數值解比較。其次進行圓管黏滯流計算,將結果與解析解比較以確定本數值方法在求解層流時之準確性。
關鍵字: 非結構四面體/稜鏡型網格、壓力更正方程式、低馬赫數流、
平行運算
For the low-mach-number flows, a lot of experimental and theoretical results have been presented, but the theoretical computation is still worthwhile to study. According to the Rossow’s pressure correction concept, a numerical solution proceduce is created to investigate the low-mach-number flow behavior in this paper. First the unstructured tetrahedral and prismatic meshes are generated in the flow domain. Then the above-mentioned numerical approach is used to solve the three-dimensional Euler/Navier-Stokes equations. This approach includes four-step Runge-kutta time-integration scheme, revised form of Roe’s flux-difference-splitting method in terms of Mach number and Jacobi / Gauss-Seidel / Modified Gauss-Seidel interation methods with/without relaxation factor for solving the Rossow’s pressure correction equation. In the present calculations, the operations by using one core and duo cores/quad cores with parallel computations are processed. To evaluate this numerical method, the inviscid flow around sphere and passing through the converging-diverging nozzle with circular cross-section are investigated first. For the different Mach numbers, the computed pressure coefficient and velocity distributions on the surface of sphere are compared with those from the potential flow theory. Also, the history of convergence and computing time are studied. About the nozzle flow, the pressure and velocity distributions along the nozzle axis are presented. Comparing with those from the one-dimensional isentropic flow the present method is evaluated. Secondly, the computation of viscous pipe flow is processed. From the comparison betwteen the resent results and the analytical solution, the accuracy of current numercail approach for solving the laminar flow is confirmed.
Keywords: unstructured tetrahedral/prismatic meshes, pressure correction equation, low-mach-number flow, parallel computation
1. Chorin, A. J., “A Numerical Method for Solving Incompressible Viscous Flow Problem,” Journal of Computational Physics, Vol. 2, 1967, pp. 12-26.
2. Steger, J. L. ,and Kutler, P., “Implicit Finite-Difference Procedures for the
Computation of Vortex Wakes,” AIAA Journal, Vol. 15, April 1977, pp.
581-590.
3. Choi, D., and Merkle, C. L., “Application of Time-Iterative Schemes to
Incompressible Flow,” AIAA Journal,Vol. 23, No. 10, 1985, pp. 1518-1524.
4. van Leer, B., Lee, W.T.,and Roe, P.L., ”Characteristic Time-Steeping or Local Preconditioning of the Euler Equations, ” AIAA Paper, 91-1552, 1991.
5. Turkel, E., “Review of Preconditioning Methods for Fluid Dynamics,” Applied Numerical Mathematics, 12, 1993, pp. 257-284.
6. Turkel, E., Vatsa, V. N., and Radespiel, R., “Preconditioning Methods for Low-Speed Flows,” in Preceedings of the 14th AIAA Applied Aerodynamics Conference, AIAA Paper 96-2460,1996.
7. Wang, M.Z., “Solving Low-Mach Number Euler Flow with Local
Preconditioning Technique,” the Thesis of Master Degree in NCKU, 2001.
8. Kadioglu, S.Y., Sussman, M., Osher, S.,Wright, J. P., Kang, M., “A Second Order Primitive Preconditioner for Solving All Speed Multi-Phase Flows,” J. Compt. Phys., 209, 2005, pp. 477-503.
9. Chen, Y.C., “A Second Order Primitive Preconditioner for Solving All
Speed Flows,” the Thesis of Master Degree in NCKU, 2006.
10. Guillard, H.,and Viozat, C., “On the Behaviour of Upwind
Schemes in the Low Mach Number Limit,” Computers and Fluids, 28, 1999, pp. 63-86.
11. Rossow, C.-C., “A Flux-Splitting Scheme for Compressible and
Incompressible Flows,” J. Compt. Phys., 164, 2000, pp. 104-122.
12. Rossow, C.-C., “A Blended Pressure/Density Based Method for the
Computation of Incompressible and Compressible Flows,” J. Compt.
Phys., 185, 2003, pp. 375-398.
13. Rossow, C.-C.,“Extension of a Compressi-ble Code Toward the
Incompressible Limit,” AIAA Journal, Vol. 41, No. 12, 2003, pp. 2379-2386.
14. Frink, N.T., Parikh, P., and Pirzadeh, S., “A Fast Upwind Solver for the
Euler Equation on Three-Dimensional Untructured Meshes,” AIAA Paper
91-0102,1991.
15. Reddy, K. C., and Jacocks, J. L.,“A Locally Implicit Scheme for the Euler
Equation,”AIAA Paper 87-1144.
16. Hwang, C.J.,and Liu, J.L., “Locally Implicit Total-Variation-Diminishing
Schemes on Unstructured Triangular Meshes,” AIAA journal,Vol.29,No10. Oct.1991,pp.1619-1626.
17. Hwang, C.J., and Yang,S.Y.,“Locally Implicit Total-Variation-
Diminishing On Mixed Quadrilaterical Triangular Meshes,” AIAA
Journal ,Vol.31,NO.11 Nov.1993,pp.2008-2015.
18. Frink, N. T.,1992,“Upwind Scheme for Sloving the Euler Equation on Unstruc-tured Tetrahedral Meshes, ”AIAA Journal, Vol.30, No.1,pp.70-77.
19. “CATIA Docummentation,” DASSUALT SYSTEM,2002.
20. Liu, C. Y., and Hwang, C. J., “New Strategy for Unstructured Mesh
Generation,” AIAA Journal, Vol. 39, No. 6, June 2001, pp. 1078-1085.
21. 賴建文,”動態四面體/稜鏡型網格之建立”國立成功大學航太所碩
士論文,2004年6月
22. 黃振彧,“微管道中氣流之計算”國立成功大學航太所碩士論
文,2007年六月
23. James E. A. John, Gas dynamics, Second edition