簡易檢索 / 詳目顯示

研究生: 高菲菲
Kao, Fei-Fei
論文名稱: 系統抽樣修正方法的研究
A Study on the Modification of Systematic Sampling
指導教授: 呂金河
Leu, Ching-Ho
學位類別: 博士
Doctor
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 118
中文關鍵詞: 系統抽樣法兩階段抽樣法馬可夫連抽樣法Horvitz-Thompson 估計量修正中央環狀系統抽樣法修正中央環狀系統抽樣法餘數馬可夫抽樣法兩階段馬可夫抽樣法空間餘數抽樣法
外文關鍵詞: Markov chain designs, two-stage sampling, systematic sampling, modified balanced circular systematic sampling, Horvitz-Thompson estimator, modified centered circular systematic sampling, remainder Markov sampling, spatial remainder sampling., two-stage Markov sampling
相關次數: 點閱:101下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當母體大小 $N$ 無法被樣本大小 $n$ 整除時,若執行系統抽樣法,則抽樣間距 $k$ 不易決定,且樣本均值為母體均值之有偏估計量。為解決此類問題並提升估計的有效性,本研究提出一些系統抽樣的改良方法。 我們提出修正均衡環狀系統抽樣法(modified balanced circular systematic sampling),修正中央環狀系統抽樣法 (modified centered circular systematic
    sampling), 餘數馬可夫抽樣法 (remainder Markov sampling)及兩階段馬可夫抽樣法 (two-stage Markov sampling)等新的抽樣法。更進一步地,探討二維空間抽樣,當母體的行與列大小 $N$, $M$ 無法被樣本大小 $n$, $m$ 整除時,建議使用 空間餘數抽樣法(spatial
    remainder sampling)。我們對提出的新方法分別找出第一階和第二階包含機率,並使用Horvitz-Thompson 估計量為母體均值的不偏估計量,進而推導出估計量之變異數及討論在不同超母體 (super-population)之下所提修正抽樣法的有效性。

    When the population size $N$ is not a multiple of sample size $n$,the sample interval $k$ is not easy to determine and the usual systematic sampling design results in a variable sample size, in this case the sampling mean will be a biased estimator for the population mean. To obviate these difficulties and in some cases to
    increase the efficiency of the estimation of population mean, a number of modifications of systematic sampling will be proposed in this thesis. New sampling methods called modified balanced circular systematic sampling, modified centered circular systematic sampling, remainder Markov sampling and two-stage Markov sampling are
    introduced. Furthermore, consider a spatial population where the units are arranged in a rectangular array of $M$ rows and $N$ columns from which a sample size $mn$ is to be drawn. We propose the spatial remainder sampling procedure when the population size $N$ is not a multiple of sample size $n$, and $M$ is not a multiple of $m$. First and second-order inclusion probabilities are derived for new sampling designs, yielding the Horvitz-Thompson estimator and its variance. Moreover, we also compare the efficiencies of the proposed sampling designs for various of super-populations.

    1. Introduction 1 1.1 The Basic Procedure 1 1.2 Problems in Systematic Sampling 2 1.2.1 Variance Estimation 3 1.2.2 The Case N is unequal to nk 5 1.2.3 Trends and Periodic Components 6 1.3 The Proposed Sampling Procedures 8 2. Modified Circular Systematic Sampling 9 2.1 Introduction 9 2.2 Modified Circular Systematic Sampling Procedures 10 2.2.1 Modified Balanced Circular Systematic Sampling 10 2.2.2 Modified Centered Circular Systematic Sampling 11 2.3 Estimator for the Population Mean 11 2.3.1 Population with Linear Trend 11 2.3.2 Population with Parabolic Trend 12 2.4 Super-population Model 13 2.5 Concluding Remarks 19 3. Remainder Markov Sampling with One Unit Per Stratum 20 3.1 Introduction 20 3.2 Remainder Markov Sampling Procedures 21 3.3 Horvitz-Thompson Estimation under Remainder Markov Sampling 27 3.4 Efficiency of Remainder Markov Sampling 28 3.4.1 Population in Random Order 28 3.4.2 Population with Linear Trend 29 3.4.3 Population with Exponentail Trend 37 3.4.4 Auto-correlated Population 45 3.5 Example 55 3.6 Concluding Remarks 57 4. Two-stage Markov Sampling 59 4.1 Introduction 59 4.2 Two-stage Markov Sampling Procedures 60 4.3 Horvitz-Thompson Estimation under Two-stage Markov Sampling 63 4.4 Efficiency of Remainder Markov Sampling 64 4.4.1 Population in Random Order 64 4.4.2 Population with Linear Trend 65 4.4.3 Auto-correlated Population 69 4.5 Concluding Remarks 73 5. Spatial Remainder Sampling 75 5.1 Introduction 75 5.2 Spatial Remainder Sampling Procedures 76 5.2.1 Spatial Remainder Stratified Sampling Procedures 77 5.2.2 Spatial Remainder Linear Systematic Sampling Procedures 79 5.3 Horvitz-Thompson Estimation under Remainder Spatial Sampling 81 5.4 Evaluation on the Finite Population Variances 85 5.5 Efficiency of Spatial Sampling 101 5.5.1 Population in Random Order 102 5.5.2 Population with Linear Trend 103 5.5.3 Population with Spatially Correlated 106 5.6 Example 107 5.7 Concluding Remarks 108 6. Conclusions 110 6.1 Conclusions 110 6.2 Future Studies 113 Bibliography 115

    1. Bellhouse, D. R. (1981). Spatial sampling in the presence of a trend. {it Journal of Statistical Planning and Inference} {f 5}, 365-375.

    2. Breidt, F. Jay (1995). Markov chain designs for one-per-stratum sampling. {it Survey Methodology} {f 21}, 63-70.

    3. Chang, H. J., and Huang, K. C. (2000). Remainder linear systematic sampling. {it Sankhy$ar{a}$} {f B 62}, 249-256.

    4. Cochran, W. G. (1946). Relative accuracy of systematic and stratified random samples for a certain class of populations. {it The Annals of Mathematical Statistics} {f 17}, 164-177.

    5. Cochran, W. G. (1977). {it Sampling Techniques}. 3rd ed. Wiley, New York.

    6. Das, A. C. (1950). Two-dimensional systematic sampling and the associated stratified and random sampling. {it Sankhy$ar{a}$} {f 10}, 95-108.

    7. Gautschi, W. (1957). Some remarks on systematic sampling. {it The Annals of Mathematical Statistics} {f 28}, 385-394.

    8. Horvitz, D. G., and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. {it Journal of the American Statistical Association} {f 47}, 663-685.

    9. Huang, K. C. (2004). Mixed random systematic sampling designs. {it Metrika} {f 59}, 1-11.

    10. Koop, J. C. (1990). Systematic sampling of two-dimensional surfaces and related problems. {it Communications in Statistics - Theory and Methods} {f 19}, 1701-1750.

    11. Lahiri, D. B. (1951). A method of sample selection providing unbiased ratio estimates. {it Ball. Inter. Statist. Inst.} {f 33}, 133-140.

    12. Leu, C. H., and Tsui, K. W. (1996). New partially systematic sampling. {it Statistica Sinica } {f 6}, 617-630.

    13. Matern, B. (1947). Methods of estimating the accuracy of line and sample plot surveys. {it Medd. fr. Statens Skogsforskinings Institut} {f 36}, 1-138.

    14. Murthy, M. N. (1967). {it Sampling Theory and Methods}. Calcutta: Statistical Publishing Society.

    15. Padam Singh, and Garg, J. N. (1979). On balanced random sampling. {it Sankhy$ar{a}$} {f C 41}, 60-68.

    16. Quenouille, M. H. (1949). Problems in plane sampling. {it The Annals of Mathematical Statistics} {f 20}, 355-375.

    17. Sampath, S., and Uthayakumaran, N. (1998). Markov systematic sampling, {it Biometrical Journal} {f 40}, 883-895.

    18. Sethi, V. K. (1965). On optimum pairing of units. {it Sankhy$ar{a}$} {f B 27}, 315-320.

    19. Singh, D., Jindal, K. K., and Garg, J. N. (1968). On modified systematic sampling. {it Biometrika} {f 55}, 541-546.

    20. Singh, D., and Padam Singh (1977). New systematic sampling. {it Journal of Statistical Planning and Inference} {f 1}, 163-177.

    21. Uthayakumaran, N. (1998). Additional circular systematic sampling methods, {it Biometrical Journal} {f 40}, 467-474.

    22. Werner, C., Brantley, S. L., and Boomer, K. (2000). CO$_{2}$ emissions related to the Yellowstone volcanic system 2. Statistical sampling, total degassing, and transport mechanisms. {it Journal of Geophysycal Research} {f B 105} , 10831-10846.

    23. Wu, C. F. J. (1984). Estimation in systematic sampling with supplementary observations. {it Sankhy$ar{a}$} {f B 46}, 306- 315.

    24. Yates, F. (1948). Systematic sampling. {it Philosophical Transactions of the Royal Society} {f A 241}, 345-377.

    25. Yates, F., and Grundy, P. M. (1953). Selection without replacement from within strata with probability proportional to size. {it Journal of the Royal Statistical Society} {f B 15}, 253-261.

    26. Zinger, A. (1980). Variance estimation in partially systematic sampling. {it Journal of the American Statistical Association} {f 75}, 206-211.

    下載圖示 校內:2007-05-26公開
    校外:2007-05-26公開
    QR CODE