簡易檢索 / 詳目顯示

研究生: 林晉彣
Lin, Jin-Wen
論文名稱: 奈米壓印技術結合蝕刻與背向式曝光於微結構之製作
Fabrication of Microstructures Using Nanoimprint Lithography Combined with Etching and Backside Exposure
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 161
中文關鍵詞: 奈米壓印乾蝕刻偏振片表面聲波元件背向式曝光
外文關鍵詞: Nanoimprint lithography, Dry etching, Polarizer, Surface acoustic wave device, Backside exposure
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究包含三個研究主題,一是利用奈米壓印結合乾式蝕刻技術製作線金屬光柵偏振片,並對其進行效率量測;二是利用奈米壓印製作表面聲波元件,應用於生醫檢測;三是利用自製曝光顯影機構做背向式曝光,並探討曝光顯影劑量對光阻形貌的影響。
    本研究成功以乾式蝕刻技術製作出高深寬比之線金屬光柵偏振片,有效克服奈米壓印在製作金屬結構時受限於舉離製程與模具結構深度的瓶頸。首先,於鍍有鋁與二氧化矽的玻璃基板上,透過奈米壓印在二氧化矽表面製作出厚度40 nm、線寬線距均為100 nm之鉻遮罩圖形,並以該圖案化之鉻層為遮罩,蝕刻位於鋁層上方之二氧化矽層。接續利用鉻與二氧化矽雙層遮罩進行乾蝕刻,最終成功製作出結構寬度115 nm、週期200 nm、高度340 nm、深寬比達2.95 的鋁金屬光柵。後續針對可見光與近紅外波段做光學量測,在偏振光通過方向,於波段1700 nm時穿透率高達82.1%;而在遮蔽方向,大多數波段之穿透率皆低於4%,展現良好的偏振選擇性與光學性能。
    本研究利用熱奈米壓印具備高解析度、低成本與製程簡便等優勢,結合金屬舉離製程,成功製作出具有大面積週期性結構與電極圖樣之表面聲波元件。實驗結果顯示,在週期性光柵結構區域,皆能穩定重現設計圖形,並順利完成金屬舉離製程。然而,由於表面聲波元件的電極設計中包含有大面積的金屬導電電極區域,在此一區域中觀察到壓印殘留層不均勻現象,進而影響舉離品質。進一步分析指出,壓印形貌的均勻性與模具幾何設計是否有利於排膠,以及壓印膠之流動特性密切相關。本研究結果可作為未來微奈米圖形轉印製程設計與參數優化之重要參考。
    本研究利用自行架設之曝光顯影機構,結合背向式曝光具備可自行對位之特性,成功製作光阻圖形。所建構之系統整合XY位移平台與Z軸控制馬達,透過程式控制可實現在單一兩吋試片上進行多組曝光與顯影參數組合之實驗,與傳統半自動顯影方式相比,大幅提升實驗效率與再現性。藉由該裝置,本研究成功獲得光阻圖形最佳製程參數,並系統性探討曝光劑量與顯影時間對光阻形貌之影響。

    This study comprises three research topics. First, wire-grid metal polarizers were fabricated using nanoimprint lithography (NIL) combined with dry etching, and their optical performance was evaluated. Second, surface acoustic wave (SAW) devices were fabricated via NIL for biomedical sensing applications. Third, a custom-built backside exposure and development system was utilized to investigate the effects of exposure and development doses on photoresist morphology.
    High-aspect-ratio aluminum gratings were successfully fabricated using a dry etching process, effectively overcoming the limitations of lift-off and mold depth in NIL-based metal patterning. A chromium mask pattern with a thickness of 40 nm and line width/spacing of 100 nm was imprinted onto a SiO2 layer coated on an Al/SiO2/glass substrate. This Cr/SiO2 bilayer served as the etching mask to produce gratings with a linewidth of 115 nm, a period of 200 nm, a height of 340 nm, and an aspect ratio of 2.95. Optical measurements showed a transmittance of 82.1% at 1700 nm in the polarization pass direction, and below 4% in the block direction, demonstrating excellent polarization selectivity.
    Thermal NIL was also applied to fabricate SAW devices with large-area periodic electrodes. The desired patterns were successfully transferred and followed by metal lift-off. However, residual layer non-uniformity in wide metal regions affected lift-off quality. Further analysis revealed that imprint uniformity strongly depends on mold geometry and resist flow behavior, providing valuable guidance for future process optimization.
    Finally, a self-developed system integrating an XY translation stage and Z-axis motor enabled programmable backside exposure and segmented development on a single 2-inch substrate. Compared to semi-automatic development, this system significantly improved efficiency and reproducibility. Optimal photoresist parameters were identified, and the relationships between exposure dose, development time, and resulting morphology were systematically studied.

    摘要 I SUMMARY III 誌謝 XXIII 目錄 XXIV 表目錄 XXVII 圖目錄 XXVIII 1 第一章 緒論 1 1.1 前言 1 1.2 文獻探討 2 1.2.1 奈米壓印技術回顧 2 1.2.2 偏振片原理與製作回顧 7 1.3 背向式曝光回顧 10 1.4 研究動機 10 1.5 論文架構 12 2 第二章 奈米壓印系統與實驗架構 14 2.1 奈米壓印系統介紹 14 2.2 奈米壓印製程前處理 17 2.2.1 矽母模仁清潔 18 2.2.2 矽母模仁表面處理 20 2.3 複合式奈米壓印模仁 25 3 第三章 高深寬比線金屬光柵偏振片 33 3.1 製程與量測設備簡介 34 3.2 奈米壓印製作蝕刻遮罩 40 3.2.1 蒸鍍鋁金屬層及二氧化矽層 40 3.2.2 奈米壓印母模仁 41 3.2.3 壓印阻劑選用 42 3.2.4 奈米壓印實驗步驟 42 3.2.5 奈米壓印與金屬舉離結果量測 46 3.3 二氧化矽與鋁金屬蝕刻 50 3.3.1 二氧化矽層蝕刻 50 3.3.2 鋁金屬蝕刻 54 3.3.3 殘留二氧化矽移除 63 3.4 光學量測 68 3.4.1 量測方式說明 68 3.4.2 量測結果討論 68 4 第四章 利用奈米壓印製作表面聲波元件 72 4.1 奈米壓印母模仁 72 4.2 壓印阻劑選用與表面聲波元件製作 76 4.3 壓印形貌確認 81 4.3.1 光柵區域形貌確認 81 4.3.2 封閉區域壓印形貌確認 85 4.4 金屬形貌確認 91 5 第五章 利用背向式曝光製作光阻結構 97 5.1 負光阻的選用與光源介紹 97 5.2 背向式曝光製程 101 5.2.1 曝光顯影機構建立 101 5.2.2 背向式曝光流程 104 5.3 曝光顯影結果 109 5.3.1 最佳曝光顯影組合 110 5.3.2 曝光顯影劑量對光阻形貌之影響 113 6 第六章 結論與未來展望 120 6.1 結論 120 6.2 未來展望 121 7 參考文獻 123

    [1] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 15, no. 6, pp. 2897-2904, 1997.
    [2] A. Jacobo-Martin et al., "Resilient moth-eye nanoimprinted antireflective and self-cleaning TiO2 sputter-coated PMMA films," Applied Surface Science, vol. 585, p. 152653, 2022.
    [3] K.-S. Han, J.-H. Shin, and H. Lee, "Enhanced transmittance of glass plates for solar cells using nano-imprint lithography," Solar Energy Materials and Solar Cells, vol. 94, no. 3, pp. 583-587, 2010.
    [4] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 4129-4133, 1996.
    [5] M. Colburn et al., "Step and flash imprint lithography: a new approach to high-resolution patterning," in Emerging Lithographic Technologies III, 1999, vol. 3676: SPIE, pp. 379-389.
    [6] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, "Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing," Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
    [7] Y.-C. Lee and C.-Y. Chiu, "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching," Journal of Micromechanics and Microengineering, vol. 18, no. 7, p. 075013, 2008.
    [8] C.-T. Lee, H.-Y. Lin, and C.-H. Tsai, "Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays," Optics Express, vol. 18, no. 26, pp. 27079-27094, 2010.
    [9] J. Chu, K. Zhao, Q. Zhang, and T. Wang, "Construction and performance test of a novel polarization sensor for navigation," Sensors and Actuators A: Physical, vol. 148, no. 1, pp. 75-82, 2008.
    [10] K.-K. Hung, U. Stege, and D. K. Hore, "IR absorption, raman scattering, and IR-Vis sum-frequency generation spectroscopy as quantitative probes of surface structure," Applied Spectroscopy Reviews, vol. 50, no. 4, pp. 351-376, 2015.
    [11] C. He, H. He, J. Chang, B. Chen, H. Ma, and M. J. Booth, "Polarisation optics for biomedical and clinical applications: a review," Light: Science & Applications, vol. 10, no. 1, p. 194, 2021.
    [12] Y. Han and G. Li, "Coherent optical communication using polarization multiple-input-multiple-output," Optics Express, vol. 13, no. 19, pp. 7527-7534, 2005.
    [13] Z. Zhang et al., "All-fiber mode-locked laser based on microfiber polarizer," Optics Letters, vol. 40, no. 5, pp. 784-787, 2015.
    [14] Y. Zhang et al., "Advanced optical polarizers based on 2D materials," npj Nanophotonics, vol. 1, no. 1, p. 28, 2024.
    [15] Y. T. Cho, "Fabrication of wire grid polarizer for spectroscopy application: From ultraviolet to terahertz," Applied Spectroscopy Reviews, vol. 53, no. 2-4, pp. 224-245, 2018.
    [16] C. Lee, E. Sim, and D. Kim, "Blazed wire-grid polarizer for plasmon-enhanced polarization extinction: design and analysis," Optics Express, vol. 25, no. 7, pp. 8098-8107, 2017.
    [17] M. Saito, T. Kano, T. Seki, and M. Miyagi, "Microwire arrays for infrared polarizers," Infrared physics & technology, vol. 35, no. 5, pp. 709-714, 1994.
    [18] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," Applied physics letters, vol. 77, no. 7, pp. 927-929, 2000.
    [19] S.-W. Ahn et al., "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology, vol. 16, no. 9, p. 1874, 2005.
    [20] W.-C. Yang, Y.-S. Huang, B.-Y. Shew, and C.-C. Fu, "Study on diffraction effect and microstructure profile fabricated by one-step backside lithography," Journal of Micromechanics and Microengineering, vol. 23, no. 3, p. 035004, 2013.
    [21] U. Palfinger et al., "Fabrication of n‐and p‐type organic thin film transistors with minimized gate overlaps by self‐aligned nanoimprinting," Advanced Materials, vol. 22, no. 45, pp. 5115-5119, 2010.
    [22] T. Oshima, "Self-aligned patterning on β-Ga2O3 substrates via backside-exposure photolithography," Japanese Journal of Applied Physics, vol. 62, no. 1, p. 018004, 2023.
    [23] Y.-C. Ding and Y.-C. Lee, "Nanoimprinting and backside ultraviolet lithography for fabricating metal nanostructures with higher aspect ratio," Nanotechnology, vol. 36, no. 4, p. 045302, 2024.
    [24] D. M. Knotter, "The chemistry of wet cleaning," Handbook of Cleaning in Semiconductor Manufacturing: Fundamental and Applications, pp. 39-94, 2010.
    [25] M. Beck et al., "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering, vol. 61, pp. 441-448, 2002.
    [26] 陳維紳, "新型奈米壓印製程結合金屬輔助化學蝕刻應用於製作奈米結構," 2022.
    [27] M. R. Technology, "mr-I 7000 thermoplastic polymer for nanoimprint lithography," ed. mr-I 7000R series data sheet, 2020.
    [28] D. H. Lee, S. J. Choo, U. Jung, K. W. Lee, K. W. Kim, and J. H. Park, "Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching," Journal of Micromechanics and Microengineering, vol. 25, no. 1, p. 015003, 2014.
    [29] W. S. Hwang, B.-J. Cho, D. S. H. Chan, V. Bliznetsov, and W. J. Yoo, "Effects of SiO2∕Si3N4 hard masks on etching properties of metal gates," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 24, no. 6, pp. 2689-2694, 2006, doi: 10.1116/1.2382950.
    [30] W. J. Mitchell, B. J. Thibeault, D. D. John, and T. E. Reynolds, "Highly selective and vertical etch of silicon dioxide using ruthenium films as an etch mask," Journal of Vacuum Science & Technology A, vol. 39, no. 4, 2021.
    [31] S.-T. Jung, H.-S. Song, D.-S. Kim, and H.-S. Kim, "Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits," Thin Solid Films, vol. 341, no. 1-2, pp. 188-191, 1999.
    [32] D. Zeze et al., "Reactive ion etching of quartz and Pyrex for microelectronic applications," Journal of applied physics, vol. 92, no. 7, pp. 3624-3629, 2002.
    [33] R. Liu, C.-S. Pai, and E. Martinez, "Interconnect technology trend for microelectronics," Solid-State Electronics, vol. 43, no. 6, pp. 1003-1009, 1999.
    [34] M. Day, M. Delfino, and S. Salimian, "Low energy ion etching of aluminum oxide films and native aluminum oxide," Journal of applied physics, vol. 72, no. 11, pp. 5467-5470, 1992.
    [35] V. M. Donnelly and A. Kornblit, "Plasma etching: Yesterday, today, and tomorrow," Journal of Vacuum Science & Technology A, vol. 31, no. 5, 2013.
    [36] H. Yatsuda, T. Kogai, M. Goto, and K. Kano, "Immunosensor using 250MHz shear horizontal surface acoustic wave delay line," in 2018 Asia-Pacific Microwave Conference (APMC), 2018: IEEE, pp. 566-568.
    [37] K. a. m. inc, "SU-8 2000 Permanent Epoxy Negative Photoresist," ed. SU-8 2002 data sheet, 2020.
    [38] 丁昱淳, "奈米共振腔超穎表面暨奈米壓印/背向曝光製作高深寬比金屬結構," 2024.

    無法下載圖示 校內:2027-08-14公開
    校外:2027-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE