簡易檢索 / 詳目顯示

研究生: 黃智昭
Huang, Chi-Chao
論文名稱: 高屏溪流域上游地下水補注與開發潛能區劃設及可開發量評估
Groundwater Recharge and Exploitative Potential Zone Mapping and Exploitable Yield in the Upstream of Kaoping River Basin
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 146
中文關鍵詞: 高屏溪地下水補注潛能區地理資訊系統開發潛能區
外文關鍵詞: Kaoping River, Groundwater recharge potential zone, GIS, Exploitative potential zone
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣山區佔全島面積的三分之二,為平原地區地下水資源的重要補注來源區域。受到全球氣候變遷及極端氣候影響,臺灣的地面水文環境產生極大的變化,已影響到系統的水文循環,水資源匱乏現象更加明顯,而地下水文環境亦受到嚴重影響,在政府提倡多水源多系統聯合經營區域性水資源策略下,山區地下水資源不失為一重要之水資源調配來源,但是面對評估山區地下水蘊含量及補注量現況所需之地質與水文地質等基本資料,卻相當匱乏。臺灣南段山區地下水於豐枯季的差異極大,加上莫拉克颱風重創高屏地區水資源系統,山區聚落之供水問題更是捉襟見肘,國家公園、國家風景區與多處森林遊樂區及自然保留區,同樣面臨水資源供應不穩定的問題,山區地下水資源儼然成為穩定南段地區供水的重要來源。
    本研究主要針對臺灣南段山區高屏溪流域上游進行地下水補注潛能與開發潛能區評估與劃設,主要研究方法為除蒐集研究區內,包括水系、流域、地質及土地利用調查等水文地質相關資料外,並使用遙測影像資料進行處理分析,考慮所需資料規格以及取得便利性,以福衛二號、航空照片及數值高程模型(DEM)進行地形分析、水系分布與植被狀況等,以建置基本圖資,並利用地理資訊系統(GIS)具空間整合功能套疊各項主題圖層,以作為水文地質特性分析之數據。
    本研究為劃設山區地下水補注潛能區,參考國內外相關文獻選定五項地下水補注潛能因子,包括岩性、線性密度、水系、坡度以及土地利用,並利用各因子間相互影響程度給予不同比率及權重值,最後利用地理資訊系統劃分研究區地下水補注潛能區,研究結果指出研究範圍內之最佳地下水補注潛能區域位於旗山溪及荖濃溪下游河谷區域,此區域地表岩性以河川堆積物為主,適宜入滲,且地形平緩,故形成地下水補注潛能最高區域。
    另本研究根據水平衡模式及基流量估計模式,進行山區逕流量與補注量估算,推估研究區域補注率之分布,並採用GOD指標評估模型概念,考量降雨補注、地表岩入滲及地下水位深度三項主要評估因子,藉以劃分研究區域地下水開發潛能區。研究結果顯示,高開發潛能區域包括隘寮溪下游河谷地區、旗山溪下游區域與荖濃溪下游河谷區域。本研究以地下水模擬系統(GMS)估算荖濃溪下游,即荖濃溪與隘寮溪交匯的三角洲範圍面積約141平方公里之開發量,模擬結果,於研究區設置高樹、泰山、新南、關福及新豐國小等五站虛擬抽水井,因新南站水力傳導係數較高,具有較高的開發量,洩降1公尺,其含水層出水能力為1.85百萬噸/平方公里,而新豐國小、高樹站及關福站等三站可開發量相近,每年約有0.54~0.64百萬噸/平方公里,泰山站因水力傳導能力較差,其含水層出水能力為0.29百萬噸/平方公里,可以提供作為日後區域地下水資源實際開發之參據。

    The purpose of this research is to investigate and assess groundwater resources in mountain area of Kaoping River, Taiwan. In study area, basic information from remote sensing and a satellite phantom was collected to set up the basic data maps and to construct of the three-dimensional conceptual model. A geographical information system (GIS) is used to integrate five contributing factors, namely lithology, land cover/land use, drainage, slope, and lineaments to demarcate the groundwater recharge potential zone. Then these data maps were applied to estimate the exploitative potential zone and the recovery capacity of groundwater by the GOD system that considered the groundwater recharge, overlying lithology and groundwater depth rating. The results showed that the valley of major rivers were the major exploitative potential zone that included Laonong River, Chishan River and Ailiao River.
    A numerical model in the range of Laonong River and Ailiao River was built by groundwater model system, GMS, in order to estimate the groundwater yield in potential exploiting sites, Gaoshu, Taishan, Shinnan, Guanfu and Shifong. The best site located at Shinnan due to higher hydraulic conductivity that the annul groundwater yield under unit drawdown is 1.85 million tons/km2. Result of Gaoshu, Guanfu and Shifong is in the range of 0.54~0.62 million tons/km2 and groundwater yield only 0.29 million tons/km2 at Taisha because of the lower permeability. In summary, these data and result of groundwater resources are very important in water resources planning and have been achieved in south Taiwan.

    摘要....................................................I Extended Abstract.....................................III 誌謝...................................................IX 目錄....................................................X 表目錄...............................................XIII 圖目錄.................................................XV 第一章 研究動機與目的....................................1 第二章 前人研究.........................................3 第三章 研究步驟與方法....................................6 3.1 山區地下水水平衡模式..................................7 3.1.1 山區地下水補注量評估................................8 3.1.2 蒸發散量評估......................................11 3.2 山區地下水補注潛能評估...............................13 3.2.1 遙測影像與水文地質特性分析.........................13 3.2.2 地下水補注潛能因子評估.............................16 一、 岩性...............................................17 二、 土地利用及覆蓋.....................................17 三、 線形構造...........................................19 四、 水系密度...........................................20 五、 坡度...............................................20 3.2.3地下水補注潛能因子相互影響關係建立...................20 3.3 山區地下水資源開發潛能評估...........................24 3.4 山區地下水可開發量評估...............................26 3.4.1 岩屑層厚度推估....................................26 3.4.2 雙封塞水力試驗....................................31 3.4.3 呂琴試驗..........................................34 3.4.4 水文地質分層與三維概念模型建立......................35 3.4.5 三維水文地質數值模型建立...........................38 3.4.6 山區地下水資源可開發量評估.........................41 第四章 現地水文地質試驗成果.............................44 4.1 現場水文地質鑽探....................................44 4.2封塞試驗.............................................57 第五章 高屏溪流域地下水補注與開發潛能區劃設及地下水資源可開發量評估.................................................70 5.1 研究區域概況........................................70 5.1.1 地理位置..........................................70 5.1.2 地形.............................................72 5.1.3 水文.............................................75 5.1.4 地質.............................................77 5.2 遙測影像與水文地質特性分析...........................83 5.2.1 高程與坡度........................................83 5.2.2 岩性與線形密度....................................83 5.2.3 水系密度..........................................88 5.2.4 地表覆蓋..........................................89 5.3 山區地下水資源補注潛能區劃設.........................90 5.3.1 岩性因子分析......................................92 5.3.2 土地利用及覆蓋因子分析.............................93 5.3.3 線形構造密度因子分析................................94 5.3.4 水系密度因子分析..................................95 5.3.5 坡度因子分析......................................96 5.3.6 高屏溪流域地下水補注潛能區劃設.....................97 5.4 山區地下水補注量與地下水資源開發潛能評估..............98 5.4.1 地下水補注量評估..................................98 5.4.2 山區地下水資源開發潛能評估........................112 5.5 山區地下水可開發量評估..............................117 5.5.1 岩屑層厚度推估...................................117 5.5.2 三維水文地質數值模型建立..........................119 5.5.3 地下水資源可開發量評估............................129 第六章 結論與建議.....................................132 6.1 結論..............................................132 6.2 建議..............................................133 第七章 參考文獻.......................................135 學術著作...............................................144

    1.Agarwal, R.G., A new method to account for producting time effect when drawdown type curves are used to analyze pressure buildup and other test data. Soc. Pet. Engrs.,paper SPE9289 presented at the 1980 SPE Annual Technical Conference and Exhibition, Dallas, Sept. 21-24, 1980.
    2.Allen, R.G. and Pruitt, W.O., FAO-24 refereence evapotranspiration factors. J. Irring. Drain. Eng, pp. 758-773, 1998.
    3.Aquaveo, GMS9.2 Tutorial FEMWATER-Flow Model, 2013.
    4.ASTM D5092-04, Standard Practice for Design and Installation of Ground Water Monitoring Wells, 2004.
    5.Barker, J.A., A generalized radial flow model for hydraulic tests in fractured rock. Water Resources Research, 24(10): 1796-1804, 1988.
    6.Bear, J., Hydraulics of Groundwater, McGraw-Hill, New York, 1978.
    7.Bou Kheir R., Shaban, A., Girard, M.C., Khawlie, M. and Abdallah, C., Caract´erisation morpho-p´edologique des zones karstiques du Liban sensibilit´e des sols `a l’´erosion hydrique. S´echeresse 14:4, 2003.
    8.Bromley, J., Edmunds, W.M., Fellman, E., Brouwer, J., Gaze, S.R., Sudlow, J. and Taupin, J.D., Estimation of rainfall inputs and direct recharge to the deep unsaturated zone of southern Niger using the chloride profile method, Journal of Hydrology, 188-189: 139-154, 1997.
    9.Charles C., Daniel, III and Paul R. Dahlen., Preliminary Hydrogeologic Assessment and Study Plan for a Regional Ground-Water Resource Investigation of the Blue Ridge and Piedmont Provinces of North Carolina, U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 02–4105, 2002.
    10.Chowdhury, A., Jha, M.K. and Chowdary, V.M., Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur, West Bengal, using RS, GIS and MCDM techniques, Environmental Earth Sciences, 59, 1209-1222, 2010.
    11.Daniel, C.C. III and Dahlen, P.R., Preliminary hydrogeologic assessment and study plan for a regional Ground-Water resource investigation of the blue ridge and piedmont provinces of North Carolina, U.S. Geological Survey, Water-Resources Investigations Report 02-4105, 2002.
    12.Duffield, G.M., AQTESOLV for Windows Version 4.5 User's Guide, HydroSOLVE, Inc., Reston, VA., 2007.
    13.Edet, A.E., Okereke, C.S., Teme, S.C. and Esu, E.O., Application of remote sensing data to groundwater exploration: a case study of the Cross River State, southeastern Nigeria, Hydrogeology Journal, 6(3): 394-404, 1998.
    14.El-Baz F. and Himida, I., Groundwater potential of the Sinai Peninsula, Egypt. Project Summery. AID, Cairo, 1995.
    15.Feller, W., An Introduction to Probability Theory and Its Applications, John Wiley & Sons, Inc. pp. 509, 1971.
    16.Fergusson et al. Testing the efficiency of grouting operations at dam sites. Intern. Congr. Large Dams, 8th Edinburgh, I, pp. 121–129, 1964.
    17.Foster SSD, Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Duijvenbooden W van, Waegeningh HG van (eds) TNO Committee on Hydrological Research, The Hague. Vulnerability of soil and groundwater to pollutants, Proceedings and Information. 38: 69–86, 1987.
    18.Greenbaum, D., Review of remote sensing applications togroundwater exploration in basement and regolith. British Geological Survey Report OD 85(8):36., 1985.
    19.Harbaugh, A.W., MODFLOW-2005, The U.S.Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16, USGS, USA, 2005.
    20.Harry E. LeGrand, A Master Conceptual Model for Hydrogeological Site Characterization in the Piedmont and Mountain Region of North Carolina, A Guidance Manual, North Carolina Department of Environment and Natural Resources Division of Water Quality Groundwater Section, 2004.
    21.Heitfeld et al. The Problem of Water Permeability in Dam Geology. Bull. IAEG, (23), pp. 79–83, Krefeld, 1981.
    22.Huang, C.C., Yeh, H.F., Lin, H.I., Lee, S.T., Hsu, K.C. and Lee, C.H. Groundwater recharge and exploitative Potential zone mapping using GIS and GOD techniques,Environmental Earth Science,Volume68 Number1, p267-280, 2013. (SCI)
    23.http://gc.moeacgs.gov.tw/imoeagis/about/index.asp
    24.http://gic.wra.gov.tw/gic/HomePage/Index.aspx
    25.http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm
    26.http://wq.epa.gov.tw/WQEPA/Code/?Languages=tw
    27.ISRM, Rock characterization testing and monitoring (ed. E. T. Brown), Pergamon Press, Oxford, 1981.
    28.Jaiswal, R.K., Mukherjee, S., Krishnamurthy, J. and Saxena, R., Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development-an approach. International Journal of Remote Sensing, 24(5): 993-1008, 2003.
    29.Jha, M.K., A Chowdhury, A., Chowdary, V.M. and Peiffer, S., Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints, Water Resources Management, 21, 427-467, 2007.
    30.Kaltsas, I. and Bosch, D. Land value modeling in Roanoke Country, Department of Agricultural Economics, Virginia Tech. Report, 2000.
    31.Karen J. Dawson and Jonathan D. Istok, Aquifer Testing: Design and Analysis of Pumping and Slug Tests, Lewis Publishers, Inc., Chelsea, Michigan, pp. 344, 1991.
    32.Kulandaiswamy, V.C. and Seetharaman, S., A note on Barnes' method of hydrograph separation, J. Hydrol., 9, pp. 222–229, 1969.
    33.Lattman, L.H. and Parizek, R.R., Relationship between fracture traces and the occurrence of groundwater in carbonate rocks, Journal of Hydrology, 2: pp. 73-91, 1964.
    34.Leduc, C., Favreau, G. and Schroeter, P., Long-term rise in a Sahelian water table: the Continental Terminal in southwest Niger, Journal of Hydrology, 243: 43-54, 2001.
    35.Li F., Pan, G., Tang, C., Zhang, Q. and Yu, J., Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain. Environmental Geology, vol.55, pp.1109-1122, 2008.
    36.Mabee, S.B., Hardcastle, K.C. and Wise, D.W., A method for collecting and analyzing lineaments for regional-scale fractured bedrock aquifer studies, Ground Water, 32(6): 884-894, 1994.
    37.Merrill, G.P., Rocks, rock-weathering and soils, New York: MacMillan Company, pp. 411, 1897.
    38.Minasny B., McBratney A.B., A rudimentary mechanistic model for soil production and landscape development. Geoderma 90:3-21, 1999.
    39.Minor, T., Russell, C., Chesley, M., Englin, J., Sander, P., Carter, J., Knowles, B., Acheampong, S. and McKay, A., Application of geographic information system technology to water well siting in Ghana, West Africa: a feasibility study, Publ. no. 44033, Desert Research Institute, Reno, USA, pp. 33, 1995.
    40.Mcdonald M.G. and Harbaugh, A.W., A Modular Thee-Dimensional Finite- Difference Ground-Water Flow Model. USGS, U.S.A., 1988.
    41.Mukherjee, S., Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India, Hydrology Journal, 19, 53-64, 1996.
    42.Murthy, K.S.R., Groundwater porential in a semi-arid region of Andhra Pradesh-a geographical information system approach, Intermational Journal of Remote Sensing, 21, 1867-1884, 2000.
    43.NRSA, Land and water resources survey of drought affected district-Kolar, Karnataka, Technical Report, National Remote Sensing Agency, Hyderabad, 1987.
    44.O’Leary, D.W., Friedman, J.D. and Poh, H.A., Lineaments, linear, lineations: some standards for old terms, Geol Soc Am Bull, 87: 1463-1469, 1976.
    45.Osnes, J.D., Winberg, A. and Andersson, J.E., Analysis of well test data – Application of probabilistic models to infer hydraulic properties of fractures, Topical Report RSI-0338, RE/SPEC INC., Rapid City, South Dacota, 1988.
    46.Putra, E., Fidra, Y. and Schechter, D., Use of experimental and simulation results for estimating critical and optimum water injection rates in naturally fractured reservoirs. SPE Annual Technical Conference and Exhibition, Houston, Texas, pp. 1-12, 1999.
    47.Rushton, K.R., Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. Journal of Hydrology 334, 262–281, 2007.
    48.Salama R.B., Tapleyb, I., Ishiic, T. and Hawkes, G., Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques, Journal of Hydrology, 162(1-2): 119-141, 1994.
    49.Sander, P., Minor, T.B. and Chesley, M.M., Ground-water exploration based on lineament analysis and reproducibility tests, Ground Water, 35(5): 888-894, 1997.
    50.Shaban, A., Studying the hydrogeology of Occidenatl Lebanon: utilization of remote sensing. Etude de l’hydrog´eologie du Liban occidental: Utilisation de la t´el´ed´etection. Th`ese de doctorat, Universit´e Bordeaux 1, pp. 202, 2003.
    51.Shaban, A., Khawlie M. and Abdallah C., Use of remote sensing and GIS to determine recharge potential zone: the case of Occidental Lebanon, Hydrogeology Journal 14: 433-443, 2006.
    52.Singh, A.K. and Prakash, S.R., An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed, Mirjapur district, U. P., India, www.GISdevelopment.net (accessed on June 25, 2003), 2002.
    53.Singhal, B.B.S. and Gupta R.P., Applied hydrogeology of fractured rocks. Springer, pp. 428, 2010.
    54.Solomon, S. and Quiel, F., Groundwater study using remote sensing and geographic information system(GIS) in the central highlands of Eritrea, Hydrogeology Journal, 14(6): 1029-1041, 2006.
    55.Sree Devi P.D., Srinivasulu S. and Kesava Raju K., Hydrogeomorphological and Groundwater Prospects of the PageruRiver Basin by Using Remote Sensing Data, Environmental Geology, 40: 1088-1094, 2001.
    56.Subba, R.N., Chakradhar, G.K.J. and Srinivas, V., Identification of groundwater potential zones using remote sensing techniques in and around Guntur Town, Andhra Pradesh, India 29 (1&2):69-78, 2001.
    57.Taylor, G.M. and Eggleton, R.A., Regolith geology and geomorphology: Nature and Process, Wiley, UK., 2001.
    58.Teeuw, R.M., Groundwater exploration remote sensing and a low-cost geographical information system, Hydrogeol. J. 3, 21–30, 1995.
    59.Tweed, S.O., Leblanc, M., Webb, J.A. and Lubczynski, M.W., Romote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia, Hydrogeology Journal, 15: 75-96, 2007.
    60.Yeh, H.F., Lee, C.H., Hsu, K.C. and Chang, P.H., GIS for the assessment of groundwater recharge potential zone. Environmental Geology 58, 185-195, 2009.
    61.王如意、易任,應用水文學,國立編譯館出版,茂昌圖書公司,2001。
    62.宋國成,五萬分之一臺灣地質圖第六十九、七十、七十二號:恆春半島圖幅。經濟部中央地質調查所,1991。
    63.宋國城、林慶偉、林偉雄、林文正,五萬分之一臺灣地質圖說明書,圖幅第五十一號-甲仙。經濟部中央地質調查所出版,共57 頁,2000。
    64.李光敦,水文學,五南出版社,2002。
    65.李振誥、陳尉平、李如晃,應用基流資料估計法推估台灣地下水補注量,台灣水利,第50卷,第1期,第69-80頁,2002。
    66.林啟文、陳文山、饒瑞鈞,臺灣活動斷層調查的近期發展。經濟部中央地質調查所特刊,第18期,85-110頁,2007。
    67.林啟文、陳文山、劉彥求、陳柏村,潮州斷層,經濟部中央地質調查所特刊,第23期,133-148頁,2009。
    68.林啟文、洪國騰,五萬分之一臺灣地質圖說明書,圖幅第五十七號-美濃。經濟部中央地質調查所出版,共73頁,2012。
    69.曹以松,地下水,中國土木水利工程學會,1989。
    70.黃振昌、宋易倫,Penman-Monteith方程式蒸氣壓力差最佳計算式之探討,氣象學報,45,53-70,2003。
    71.黃智昭、林宏奕、李振誥、陳昭旭、張閔翔、王詠絢,高屏溪流域上游地下水補注潛勢與開發潛能區之劃分,中央地質調查所彙刊第29號,第127-172頁,2016。
    72.經濟部中央地質調查所,集水區水文地質調查評估,2008。
    73.經濟部中央地質調查所,易淹水地區上游集水區地質調查與資料庫建置第2期99年度–集水區地質調查及山崩土石流調查與發生潛勢評估(2/3)報告,2010。
    74.經濟部中央地質調查所,台灣山區地下水資源調查研究整體計畫-第一期台灣中段山區地下水岩層水力特性調查與地下水位觀測井建置(1/4),2010。
    75.經濟部中央地質調查所,臺灣中段山區地下水資源調查計畫-臺灣中段山區地下地下岩層水力特性調查與地下水位觀測井建置(1/4)。共616頁,2010。
    76.經濟部中央地質調查所,台灣山區地下水資源調查研究整體計畫-第一期台灣中段山區地下岩層水力特性調查與地下水位觀測井建置(2/4),2011。
    77.經濟部中央地質調查所,台灣山區地下水資源調查研究整體計畫-第一期台灣中段山區地下岩層水力特性調查與地下水位觀測井建置(3/4),2012。
    78.經濟部中央地質調查所,易淹水地區上游集水區地質調查與資料庫建置第3期102年度–集水區地質調查及山崩土石流調查與發生潛勢評估(3/3)報告,2012。
    79.經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(4/4),2012。
    80.經濟部中央地質調查所,臺灣中段山區地下水資源調查計畫-臺灣中段山區地下地下岩層水力特性調查與地下水位觀測井建置(1/4)。共295頁,2013。
    81.經濟部中央地質調查所,臺灣南段山區地下水資源調查計畫-臺灣南段山區地下水水資源調查與評估(1/4)。共295頁,2014。
    82.經濟部中央地質調查所,臺灣南段山區地下水資源調查計畫-臺灣南段山區地下水位觀測與水力特性調查(2/4)。共359頁,2015。
    83.經濟部中央地質調查所,工程地質探勘資料庫http://gc.moeacgs.gov.tw/imoeagis/about/index.asp
    84.經濟部中央地質調查所,地質資料整合查詢系統http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm
    85.經濟部水利署,地理資訊倉儲中心http://gic.wra.gov.tw/gic/HomePage/Index.aspx
    86.經濟部水利署,臺灣地區地下水圖圖集繪製工作(3/4),2005。
    87.葉信富、李振誥、陳忠偉、張格綸,評估蒸發皿係數以推估臺灣南部地區蒸發散量之研究,農業工程學報,第54卷第3期,第27-35頁,2008。
    88.葉信富、張伯勳、徐國錦、李振誥,應用地理資訊系統評估流域地下水補注潛能區之研究,臺灣水利,56(2),第14-24頁,台北,2008。

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE